当前位置: 首页 > news >正文

网站信息资源建设包括哪些百度推广每年600元什么费用

网站信息资源建设包括哪些,百度推广每年600元什么费用,vs2010网站开发,wordpress app展示Sentinel-2 卫星提供了高分辨率的地表覆盖图像,广泛应用于农业监测、城市规划、环境变化分析等诸多领域。在 Google Earth Engine (GEE) 中,我们能够按特定地理范围导出这些影像,以支持更深入的研究和分析。 使用方法 💻 GEE 提供…


Sentinel-2 卫星提供了高分辨率的地表覆盖图像,广泛应用于农业监测、城市规划、环境变化分析等诸多领域。在 Google Earth Engine (GEE) 中,我们能够按特定地理范围导出这些影像,以支持更深入的研究和分析。

使用方法 💻

GEE 提供了一个强大的平台用于处理和导出 Sentinel-2 数据。本文将介绍如何利用 Python 与 GEE API 来按指定地理范围导出 Sentinel-2 卫星影像。

  • https://developers.google.com/earth-engine/datasets/catalog/sentinel-2

代码详解 🔍

下面是一个使用 Python 和 GEE API 导出 Sentinel-2 卫星影像的代码详解:

  • 获取边界信息
aoi = ee.FeatureCollection(area_of_interest)
feature_count = aoi.size().getInfo()

这里加载了地理兴趣区域,并检查了这个区域是否包含有效的特征。如果没有任何特征,则会打印一条消息提示集合为空。

  • 获取兴趣区域的几何信息
geometry = aoi.geometry()

获取了地理兴趣区域的几何形状,这将用于后续的图像过滤和裁剪操作。

  • 加载 Sentinel-2 图像集合
s2_collection = ee.ImageCollection('COPERNICUS/S2_HARMONIZED') \.filterBounds(geometry) \.filterDate(datetime(year, 1, 1), datetime(year + 1, 1, 1)) \.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))

Copernicus Sentinel-2 数据集中加载图像集合,并过滤出感兴趣区域内的图像。接着,进一步筛选出指定年份的图像,并排除云层占比超过 20% 的图像。

  • 定义云遮蔽函数
def mask_s2clouds(image):qa = image.select('QA60')cloud_mask = qa.bitwiseAnd(1 << 10).eq(0).And(qa.bitwiseAnd(1 << 11).eq(0))return image.updateMask(cloud_mask).divide(10000)

这个函数通过选择 QA60 波段,并应用位运算来检测云层。然后更新掩膜来移除检测到的云,并将像素值标准化(因为 Sentinel-2 图像的原始像素值是 10000 倍的实际反射率)。

  • 对图像集合应用云遮蔽函数
masked_collection = s2_collection.map(mask_s2clouds)

应用前面定义的云遮蔽函数到整个 Sentinel-2 图像集合上。

  • 计算图像集合的中值图像,并按兴趣区域裁剪
median_image = masked_collection.median().clip(aoi)

计算了图像集合的中值图像,这有助于减少噪声和云的影响。之后,按照地理兴趣区域裁剪图像。

  • 选择正确的波段顺序

selected_bands = median_image.select(['B4', 'B3', 'B2'])

选择了红绿蓝(RGB)波段作为输出图像的显示,这是常见的视觉化方式。

  • 导出图像到 Google Drive
export_task = ee.batch.Export.image.toDrive(image=selected_bands,description=aoi.first().get('name').getInfo(),folder=output_directory,fileNamePrefix=aoi.first().get('name').getInfo(),region=geometry,scale=10,maxPixels=1e13
)
export_task.start()

设置了导出任务,将裁剪后的中值图像导出到 Google Drive 上指定的目录下。导出的文件名基于地理兴趣区域的名称,以方便识别。

完整案例 🏞️

在此示例中,我们首先初始化了必要的变量,并加载了地理兴趣区域的边界数据集。随后,创建了 Sentinel-2 卫星影像的集合,并应用了云遮蔽函数。最后,计算了中值影像并将其导出到了 Google Drive。

import ee
from datetime import datetime# 初始化 Earth Engine
ee.Initialize()def crop_image_sentinel(area_of_interest, year, output_directory):"""导出 Sentinel-2 图像到 Google Drive.参数:area_of_interest -- 地理兴趣区域的 FeatureCollection URL.year -- 导出图像的年份.output_directory -- Google Drive 中保存图像的目录."""# 获取边界信息aoi = ee.FeatureCollection(area_of_interest)feature_count = aoi.size().getInfo()if feature_count > 0:# 获取兴趣区域的几何信息geometry = aoi.geometry()# 加载 Sentinel-2 图像集合s2_collection = ee.ImageCollection('COPERNICUS/S2_HARMONIZED') \.filterBounds(geometry) \.filterDate(datetime(year, 1, 1), datetime(year + 1, 1, 1)) \.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))# 定义云遮蔽函数def mask_s2clouds(image):qa = image.select('QA60')cloud_mask = qa.bitwiseAnd(1 << 10).eq(0).And(qa.bitwiseAnd(1 << 11).eq(0))return image.updateMask(cloud_mask).divide(10000)# 对图像集合应用云遮蔽函数masked_collection = s2_collection.map(mask_s2clouds)# 计算图像集合的中值图像,并按兴趣区域裁剪median_image = masked_collection.median().clip(aoi)# 选择正确的波段顺序selected_bands = median_image.select(['B4', 'B3', 'B2'])# 导出图像到 Google Driveexport_task = ee.batch.Export.image.toDrive(image=selected_bands,description=aoi.first().get('name').getInfo(),folder=output_directory,fileNamePrefix=aoi.first().get('name').getInfo(),region=geometry,scale=10,maxPixels=1e13)export_task.start()else:print('The FeatureCollection is empty.')

注意事项 ⚠️

  • 权限: 确保您的 GEE 账户拥有足够的权限来执行数据导出操作。
  • 数据范围: 确认指定的地理兴趣区域和年份是准确的,避免不必要的数据导出。
  • 云遮蔽: 根据实际情况调整云遮蔽函数,以提高云检测的准确性。

术语解释表 📋

术语/函数解释
eeGoogle Earth Engine Python API 包,用于访问和处理遥感数据。
datetimePython 内置模块,用于日期和时间处理。
ee.FeatureCollection表示地理矢量数据的集合。
ee.ImageCollection表示遥感图像集合。
filterBounds过滤图像集合中的图像,只保留那些与给定地理区域相交的图像。
filterDate过滤图像集合中的图像,只保留那些在给定日期范围内的图像。
filter用于过滤图像集合中的图像,这里用来排除云层比例过高的图像。
updateMask更新图像的掩膜,通常用于去除不需要的部分如云层等。
median计算图像集合的中值图像,用于减少噪声和云的影响。
clip按给定的地理区域裁剪图像。
select从图像中选择特定的波段。
Export.image.toDrive将图像导出到 Google Drive。

如果这对您有所帮助,希望点赞支持一下作者! 😊

详细全文-点击查看

file

http://www.15wanjia.com/news/190647.html

相关文章:

  • 如何判断网站做的关键词济南做网站互联网公司
  • 洛阳电商网站建设公司排名和各大网站做视频的工作
  • 百度不收录你的网站产品设计平台网站
  • 中国建设银行的网站特色网站建设与管理淘宝
  • 2016企业网站模板中文顺企网企业黄页
  • 企业交易平台的网站制作多少钱如何做网站地图视频
  • php网站开发实训指导书建设工程+质量+协会网站
  • 做相册集什么网站WordPress引用阿里云矢量图
  • 昆山专业简历制作网站2017年网站开发用什么语言
  • 网站开发中网页之间的连接形式有便宜网站建设 优帮云
  • 哪个网站可以做任务手机建立网站application
  • 网站标签怎么做天猫店
  • 四川专业网站建设推广中企动力深圳分公司
  • 如何快速进行网站开发做网站排版
  • 如何自己搭建一个个人网站建设网络平台
  • 谁会在西安做网站的吗建站如何收费
  • 哈尔滨队网站网页美工学习吧网站
  • 商业网站设计专业wordpress支持代码高亮
  • 作品展示网站模板高端网站建设公司排行
  • 校园网站开发的需求分析网页建设多少钱
  • 建设物业公司网站行业门户网站 建站
  • 网站建设费用预算表wordpress的主题mnews1.9
  • 河津网站制作wordpress和帝国哪个好
  • 抖音点赞自助网站网站会员注册系统
  • 网站的功能板块头条搜索是百度引擎吗
  • 网站开站js网站文字重叠
  • 网站404页面做晚了三只松鼠电商网站建设
  • 网站着陆页怎么做惠州市建设规划局网站
  • 张掖市建设规划局网站网页设计适合什么岗位
  • 网站一次性建设室内设计师多少钱一个月