当前位置: 首页 > news >正文

苏州网站制作计划wordpress上传空间后

苏州网站制作计划,wordpress上传空间后,推广普通话奋进新征程宣传语,网站开发脚本语言和数据库目录 前言 一、评价类问题概述 二、AHP建模流程 1、过程描述 2、层次分析法—Matlab代码 三、权重计算 1、算术平均法 2、几何平均法 3、特征值法 目录 文章目录 前言 一、评价类问题概述 二、AHP建模流程 1、过程描述 2、层次分析法—Matlab代码 三、权重计算 算术平均法 前言…

目录

前言

一、评价类问题概述

二、AHP建模流程

1、过程描述

2、层次分析法—Matlab代码

三、权重计算

1、算术平均法

2、几何平均法

3、特征值法


目录

文章目录

前言

一、评价类问题概述

二、AHP建模流程

1、过程描述

2、层次分析法—Matlab代码

三、权重计算

算术平均法



前言

本文将讲解解决评价类问题的第一种模型层次分析法(AHP法),首先我们会具体讲解评价类问题解答的具体流程再对AHP方法进行讲解


一、评价类问题概述

评价指标本身的数学量化,评价指标之间的数学综合

基本流程明确主体—>指标明确—>权重计算—>方案评价

明确主体:明确哪里可以用到评价,比如:2012对《葡萄酒的评价》这里葡萄球的等级就是可以用到评价的地方

指标确定:可以通过一个思维导图的方式来画出这个指标系统。先确定方向(通过查找文献和头脑风暴),然后再向下细化

权重计算:使用主观权重法和客观权重法,每个指标都要进行归一化

方案评价:得到权重后,再对结果进行进一步分析

二、AHP建模流程

1、过程描述

1、建立层次结构模型:

目标层(决策的目标,如:选出微博之星)

准测层C={C1,C2,···,Cn}(考虑的因素,实质上就是评价指标

方案层P={P1,P2,···Pm}(决策对象,如:微博之星又A,B,C三个人可选择)

2、构造判断矩阵

对于准则层中的每个元素Ci(i=1,2,···,n),构造一个关于方案层P中各个元素两两比较的判断矩阵Ai(mxm),其中元素aij表示因素Pj相对于因素Pi的重要性程度。通常使用1-9的比例标度来表示这种重要性程度。易得aij*aji=1,所以在写判断矩阵时可以只写一边矩阵再对应填另一边

注意:这个地方常常会出现嵌套分层,也就是说可能每个Ci可能会单独对应某些Pi,这个时候要再构造一次判断矩阵,本质上就是先聚类(将单个指标因素按照关联度和相似度分为互不影响的几大类)再使用层次分析法

例如:下面我们将问题分成了三层,其中,我们将指标首先分为互不影响的三大类:通行能力,安全性,便捷度,首先对这三类构造判断矩阵,进行一致性检验,算出这三大类的权重;然后又讨论影响这三大类的因素,在每一大类中,对其中的影响因素再构造相应的判断矩阵,并且检验其一致性,再算出每个因素的权重,最后再计算出每个具体因素的总权重,进行评价分析。 

7756049e84c9445497adb85c7c5133be.png

efaa1fa5282d46e7916c3467562224ab.png

c7717e2fc8b04cea8ae4cc1cf1a0e241.png

3层次单排序及一致性检验

  • 对于每个判断矩阵Ai,计算其最大特征根λmax和对应的特征向量Wi对特征向量Wi进行归一化处理(其实就是特征向量/n
  • 得到准则层Ci下各因素的权重向量wi = (wi1, wi2, ..., wim)。
  • 计算一致性指标CI 和随机一致性指标RI(可在网上查到),进而计算一致性比例CR = CI / RI。
  • 551a5c0d2c0247d1b8c3e99688fecaf1.png
  • 如果CR < 0.1,(这里只有CI越小CR才能越小,故当λmax—>n时,我们认为矩阵Ai越接近一致矩阵) 则认为判断矩阵Ai具有满意的一致性
224b85bcee00430e93fd1b157fc0649f.png,CI通过上述公式求出,同时Xmax即为最大特征根,n为评价指标个数
整个过程可概括为下面的流程图
7c33b155db914c0f885a8bedd3d9e22f.png

2、层次分析法—Matlab代码

%层次分析法-一致性检验
A = input('判断矩阵A=');%输入判断矩阵
[n,n]=size(A); %获取A的行和列%求出最大特征值以及对应的特征向量
[V,D]=eig(A); %V是特征向量 D是特征值构成的对角矩阵
Max_eig = max(max(D)); %先求出每一行的最大值,再求出最大值中的最大值,即为最大特征值CI = (Max_eig - n)/(n-1);%求出一致性检验指标%网上查表可得
RI=[0,0.0001,0.52,0.89,1.12,1.26,1.36,1.41,1.46,1.49,1.52,1.54,1.56,1.58,1.59];%注意RI最多支持n=15
CR=CI/RI(n);
disp('一致性指标CI=');disp(CI);
disp('一致性比例CR=');disp(CR);if CR<0.1disp('因为CR<0.01,所以该判断矩阵A的一致性可以接受!');
elsedisp('注意:CR>=0.10,因此该判断举证A要进行修改!');
end

三、权重计算

1、算术平均法

%1.算术平均法计算权重
%输入样例,将前面的判断矩阵输入即可,此处省略
Asum=sum(A,1);%将A的每列求和赋值到Asum中
Ar = repmat(Asum,n,1);%复制Asum n行1列为Ar矩阵,使得Ar又变回了n行n列的矩阵
stand_A=A./Ar;%归一化处理,./表示对应的元素相除
ASumr = sum(stand_A,2);%再对归一化处理后的矩阵的每列加到同一行
disp(ASumr/n);%相加后的每个元素/n得到权重向量(nx1)

2、几何平均法

A = input('判断矩阵A='); %输入判断矩阵
[n,n] = size(A); %获取A的行和列
prod_A = prod(A,2); %将A中每一行元素相乘得到
一列向量
prod_n_A = prod_A.^(1/n); %将新的向量的每个分量开n
次方等价求1/n次方
re_prod_A = prod_n_A./sum(prod_n_A);%归一化处理
disp(re_prod_A); %展示权重结果

3、特征值法

A = input('判断矩阵A='); %输入判断矩阵
[n,n] = size(A); %获取A的行和列
%求出最大特征值以及对应的特征向量
[V,D] = eig(A); %V是特征向量 D是特征值构
成的对角矩阵
Max_eig = max(max(D)); %先求出每一列的最大值,
再求最大值中的最大值
[r,c] = find(Max_eig == D,1);%使用find()函数找出最大
特征值对应的特征向量的位置(索引)
%对特征向量进行归一化得到所需权重
disp(V(:,c)./sum(V(:,c)));

http://www.15wanjia.com/news/189055.html

相关文章:

  • 郴州建设网站的公司2019年云南建设银行招聘网站
  • 买网站域名旅游网站制作建设
  • 国内好的网站设计学做ppt推荐网站
  • 怎么用dw制作网站公司做网站自己注册域名
  • 南宁网站seo大概多少钱浏览器兄弟懂的拿走不谢2021
  • 网站建设的布局对网络推广的影响企业管理咨询合同模板
  • 朝阳区住房和城乡建设部网站山西省建设工程招投标监督网站
  • 做网站还是app好在线制作图片拼接
  • wordpress大学模板电商关键词seo排名
  • 端午节网站建设品牌建设的最高境界是培育客户成为什么购买者
  • 如何制作单页网站网站宣传需要多少钱
  • 网站英文域名郑州小程序
  • 域名信息查询网站化妆品网站建设需求问卷调查
  • 网站建设需要多少费用公司名字大全列表
  • 信用网站一体化建设方案百度关键词优化送网站
  • php程序员做企业网站好看大方的企业网站源码.net
  • 常州网站建设费用公司起名大全2020最新版的
  • 台州椒江网站建设删掉wordpress主题
  • 域名备案关闭网站平台和网站有什么区别
  • 影视文化传媒公司网站建设app推广平台
  • asp网站源码免费版网站建设提供排名
  • 做团购网站需要什么资质WordPress徽章系统
  • 杭州市做外贸网站的公司空间数据云网站
  • 怎么做网站的界面成品视频直播软件推荐哪个好一点安全
  • 网站嵌入地图外链的论坛网站
  • 做一个网站难不难电子代加工东莞网站建设
  • 充电宝网站建设策划书济宁商城网站开发设计
  • 汉中网站建设哪家好wordpress后台 502
  • 手机网站活动策划方案昆明网站设计方案
  • 网站手机版绑定域名wordpress 当前分类文章数