当前位置: 首页 > news >正文

html百科网站模板wordpress前台登录地址

html百科网站模板,wordpress前台登录地址,网站建设类论文格式,php网站优化一、环境要求 HadoopHiveSparkHBase 开发环境。 二、数据描述 meituan_waimai_meishi.csv 是某外卖平台的部分外卖 SPU(Standard Product Unit , 标准产品单元)数据,包含了外卖平台某地区一时间的外卖信息。具体字段说明如下&am…

一、环境要求 Hadoop+Hive+Spark+HBase 开发环境。

二、数据描述

meituan_waimai_meishi.csv 是某外卖平台的部分外卖 SPU(Standard Product Unit , 标准产品单元)数据,包含了外卖平台某地区一时间的外卖信息。具体字段说明如下:

字段名称

中文名称

数据类型

spu_id

商品spuID

String

shop_id

店铺ID

String

shop_name

店铺名称

String

category_name

类别名称

String

spu_name

SPU名称

String

spu_price

SPU商品售价

Double

spu_originprice

SPU商品原价

Double

month_sales

月销售量

Int

praise_num

点赞数

Int

spu_unit

SPU单位

String

spu_desc

SPU描述

String

spu_image

商品图片

String

三、功能要求

1.数据准备

在 HDFS 中创建目录/app/data/exam,并将 meituan_waimai_meishi.csv 文件传到该 目录。并通过 HDFS 命令查询出文档有多少行数据。

启动Hadoop

[root@kb135 ~]# start-all.sh

退出安全模式

[root@kb135 ~]# hdfs dfsadmin -safemode leave

上传文件

[root@kb135 examdata]# hdfs dfs -put ./meituan_waimai_meishi.csv /app/data/exam

查看数据行数

[root@kb135 examdata]# hdfs dfs -cat /app/data/exam/meituan_waimai_meishi.csv | wc -l

2.使用 Spark加载 HDFS 文件

加载meituan_waimai_meishi.csv 文件,并分别使用 RDD 和 Spark SQL 完成以下分析(不用考虑数据去重)。

Rdd:

启动spark

[root@kb135 ~]# spark-shell

创建Rdd

scala> val fileRdd = sc.textFile("/app/data/exam/meituan_waimai_meishi.csv")

清洗数据

scala> val spuRdd = fileRdd.filter(x=>x.startsWith("spu_id")==false).map(x=>x.split(",",-1)).filter(x=>x.size==12)

①统计每个店铺分别有多少商品(SPU)。

scala> spuRdd.map(x=>(x(2),1)).reduceByKey(_+_).collect.foreach(println)

②统计每个店铺的总销售额。

scala> spuRdd.map(x=>(x(2),x(5).toDouble*x(7).toInt)).filter(x=>x._2>0).reduceByKey(_+_).collect.foreach(println)

③统计每个店铺销售额最高的前三个商品,输出内容包括店铺名,商品名和销售额,其 中销售额为 0 的商品不进行统计计算,例如:如果某个店铺销售为 0,则不进行统计。

scala> spuRdd.map(x=>(x(2),x(4),x(5).toDouble*x(7).toInt)).filter(x=>x._3>0).groupBy(x=>x._1).mapValues(x=>x.toList.sortBy(item=>0-item._3).take(3)).flatMapValues(x=>x).map(x=>x._2).collect.foreach(println)

scala> spuRdd.map(x=>(x(2),x(4),x(5).toDouble*x(7).toInt)).filter(x=>x._3>0).groupBy(x=>x._1).flatMap(x=>{x._2.toList.sortBy(item=>0-item._3).take(3)}).collect.foreach(println)

scala> spuRdd.map(x=>(x(2),x(4),x(5).toDouble*x(7).toInt)).filter(x=>x._3>0).groupBy(x=>x._1).map(x=>{x._2.toList.sortBy(item=>0-item._3).take(3) }).flatMap(x=>x).collect.foreach(println)

---------------------------------------------------------------------------------------------------------------------------------

spark sql:

①统计每个店铺分别有多少商品(SPU)。

scala> spark.sql("select shop_name ,count(spu_name) as num from spu group by shop_name").show

②统计每个店铺的总销售额。

scala> spark.sql("select shop_name,sum(spu_price*month_sales) as money from spu where month_sales !=0 group by shop_name").show

③统计每个店铺销售额最高的前三个商品,输出内容包括店铺名,商品名和销售额,其中销售额为 0 的商品不进行统计计算,例如:如果某个店铺销售为 0,则不进行统计。

scala> spark.sql("select t.shop_name,t.spu_name,t.money,t.rn from (select shop_name,spu_name,spu_price*month_sales as money,row_number() over(partition by shop_name order by spu_price*month_sales desc) as rn from spu where month_sales != 0) t where t.rn<4").show(100)

3.创建 HBase 数据表

在 HBase 中创建命名空间(namespace)exam,在该命名空间下创建 spu 表,该表下有

1 个列族 result。

启动zookeeper

[root@kb135 ~]# zkServer.sh start

启动hbase

[root@kb135 examdata]# start-hbase.sh

[root@kb135 examdata]# hbase shell

创建表空间

hbase(main):002:0> create_namespace 'exam202009'

创建表

hbase(main):003:0> create 'exam202009:spu','result'

4.在 Hive 中创建数据库 spu_db

在该数据库中创建外部表 ex_spu 指向 /app/data/exam 下的测试数据 ;创建外部表 ex_spu_hbase 映射至 HBase 中的 exam:spu 表的 result 列族 

 ex_spu 表结构如下:

字段名称

中文名称

数据类型

spu_id

商品spuID

string

shop_id

店铺ID

string

shop_name

店铺名称

string

category_name

类别名称

string

spu_name

SPU名称

string

spu_price

SPU商品价格

double

spu_originprice

SPU商品原价

double

month_sales

月销售量

int

praise_num

点赞数

int

spu_unit

SPU单位

string

spu_desc

SPU描述

string

spu_image

商品图片

string

ex_spu_hbase 表结构如下:

字段名称

字段类型

字段含义

key

string

rowkey

sales

double

销售额

praise

int

点赞数

创建表语句:

create external table if not exists ex_spu(
spu_id string,
shop_id string,
shop_name string,
category_name string,
spu_name string,
spu_price double,
spu_originprice double,
month_sales int,
praise_num int,
spu_unit string,
spu_desc string,
spu_image string
)
row format delimited fields terminated by ","
stored as textfile location "/app/data/exam"
tblproperties("skip.header.line.count"="1");
create external table if not exists ex_spu_hbase(
key string,
sales double,
praise int
)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' with
serdeproperties("hbase.columns.mapping"=":key,result:sales,result:praise")
tblproperties("hbase.table.name"="exam202009:spu");

 5. 统计查询

统计每个店铺的总销售额 sales, 店铺的商品总点赞数 praise,并将 shop_id 和 shop_name 的组合作为 RowKey,并将结果映射到 HBase。

插入数据:

hive (spu_db)> insert into ex_spu_hbase (select concat(shop_id,shop_name) as key ,sum(spu_price*month_sales) as sales,sum(praise_num) as praise from ex_spu group by shop_id,shop_name);

完成统计后,分别在 hive 和 HBase 中查询结果数据。

hive (spu_db)> select * from ex_spu_hbase;

hbase(main):005:0> scan 'exam202009:spu'

http://www.15wanjia.com/news/186451.html

相关文章:

  • 国内做的比较简洁的网站有空间与域名 怎么做网站
  • 提供网站建设的理由大连中山网站建设
  • 怎么开发一个自己的网站株洲市
  • 实用网站建设知识点对网站主要功能界面进行赏析
  • 建设的网站属于固定资产么单页面优化的重点
  • 怎么建设网站阿里云网站 虚拟主机
  • 设计素材网站推荐2023网站流量地址评价是什么意思
  • 西安网站搭建费用jsp网站开发详解
  • 深圳网站建设网络搜索引擎推广渠道
  • 如何做一张图片的网站wordpress漏洞 2014
  • 制作购物网站需要多少钱成都关键词
  • 佛山制作网站企业网站建设感谢信
  • 做会员卡网站网站怎么在百度做推广方案
  • 网站建设技术经费预算用asp做网站登录页面
  • 二手书交易网站策划书怎么用ftp备份网站
  • 毕设做网站什么能过什么物流公司网站建设
  • 经典网站设计如何搭建网站教程
  • 免费cms建站五指小型网站开发语言
  • 如何看一个网站是用哪个语言做的短视频动画制作
  • 买了域名之后怎么做网站医疗网站设计网站
  • 给钱做h事都行的网站名怎么设计个人网站
  • 网站运营主要做什么秦皇岛北京网站建设
  • 晋城推广型网站开发即墨做网站的
  • 产品宣传网站的重点重庆市建设岗位培训中心
  • 微交易网站建设页面设计考试题
  • 商城网站建设二次开发做自动化设备哪个网站
  • 宁波网站建设信息西青seo
  • flash网站下载互联网怎么做网站
  • 邵阳网站建设设计中国电子科技集团有限公司
  • 常用的品牌策划公司深圳seo网络公司