当前位置: 首页 > news >正文

做网站到底需要什么成都大型网站维护公司

做网站到底需要什么,成都大型网站维护公司,dede网站qq类源码,wordpress media.php前言 系列专栏:【深度学习:算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对…

送餐时间预测

前言

系列专栏:【深度学习:算法项目实战】✨︎
涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。

对于送餐服务公司来说,预测订单的送达时间是一项极具挑战性的任务。像 Zomato 和 Swiggy 这样的食品外卖服务需要准确显示送达订单所需的时间,以保持对客户的透明度。这些公司使用机器学习算法,根据送餐员过去在相同距离上所花费的时间来预测送餐时间。因此,如果您想了解如何使用机器学习预测食品配送时间,本文就是为您准备的。本文将带你使用 Python 通过机器学习预测送餐时间。

目录

  • 1. 相关数据集
    • 1.1 导入必要库
    • 1.2 加载数据集
  • 2. 计算两个经纬度之间的距离
  • 3. 探索性分析
    • 3.1 送餐距离和送餐时间
    • 3.2 送餐时间与送餐员年龄
    • 3.3 送餐时间与送餐员评级
    • 3.4 食物类型与车辆类型
  • 4. 时间预测模型
    • 4.1 准备数据
    • 4.2 构建模型(LSTM)
    • 4.3 模型训练
    • 4.4 模型评估
  • 5. 总结

1. 相关数据集

要实时预测食品配送时间,我们需要计算餐厅与送餐地点之间的距离。在找到餐厅和送餐地点之间的距离后,我们需要找到送餐员过去在相同距离内送餐所用时间之间的关系。因此,为了完成这项任务,我们需要一个数据集,其中包含送餐员从餐厅到送餐地点的送餐时间数据。

这里提供的数据集是 Gaurav Malik 在 Kaggle 上提交的原始数据集的净化版本。
以下是数据集中的所有特征:🔗

  1. ID: 订单 ID 编号
  2. Delivery_person_ID: 送餐员的 ID 编号
  3. Delivery_person_Age: 送餐员的年龄
  4. Delivery_person_Ratings(送餐人员评分): 根据以往送餐情况对送餐员的评分
  5. Restaurant_latitude: 餐厅的纬度
  6. Restaurant_longitude: 餐厅的经度
  7. Delivery_location_latitude: 送餐地点的纬度
  8. Delivery_location_longitude: 送餐地点的经度
  9. Type_of_order: 顾客订购的餐食类型
  10. Type_of_vehicle:送餐员所乘坐车辆的类型
  11. Time_taken(min): 送餐员完成订单所需的时间

1.1 导入必要库

我将通过导入必要的 Python 库和数据集来开始送餐时间预测任务:

import numpy as np
import pandas as pd
import plotly.express as px#splitting data
from sklearn.model_selection import train_test_split# creating the LSTM neural network model
from keras.models import Sequential
from keras.layers import Input, Dense, LSTM

1.2 加载数据集

①使用 pandas 函数 .read_csv() 加载数据集

data = pd.read_csv("deliverytime.txt")
print(data.head())
     ID Delivery_person_ID  Delivery_person_Age  Delivery_person_Ratings  \
0  4607     INDORES13DEL02                   37                      4.9   
1  B379     BANGRES18DEL02                   34                      4.5   
2  5D6D     BANGRES19DEL01                   23                      4.4   
3  7A6A    COIMBRES13DEL02                   38                      4.7   
4  70A2     CHENRES12DEL01                   32                      4.6   Restaurant_latitude  Restaurant_longitude  Delivery_location_latitude  \
0            22.745049             75.892471                   22.765049   
1            12.913041             77.683237                   13.043041   
2            12.914264             77.678400                   12.924264   
3            11.003669             76.976494                   11.053669   
4            12.972793             80.249982                   13.012793   Delivery_location_longitude Type_of_order Type_of_vehicle  Time_taken(min)  
0                    75.912471        Snack      motorcycle                24  
1                    77.813237        Snack         scooter                33  
2                    77.688400       Drinks      motorcycle                26  
3                    77.026494       Buffet      motorcycle                21  
4                    80.289982        Snack         scooter                30  

接下来,让我们来看看每一列数据的具体信息
②使用 .info()方法打印有关DataFrame的信息,包括索引dtype和列、非null值以及内存使用情况

data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45593 entries, 0 to 45592
Data columns (total 11 columns):#   Column                       Non-Null Count  Dtype  
---  ------                       --------------  -----  0   ID                           45593 non-null  object 1   Delivery_person_ID           45593 non-null  object 2   Delivery_person_Age          45593 non-null  int64  3   Delivery_person_Ratings      45593 non-null  float644   Restaurant_latitude          45593 non-null  float645   Restaurant_longitude         45593 non-null  float646   Delivery_location_latitude   45593 non-null  float647   Delivery_location_longitude  45593 non-null  float648   Type_of_order                45593 non-null  object 9   Type_of_vehicle              45593 non-null  object 10  Time_taken(min)              45593 non-null  int64  
dtypes: float64(5), int64(2), object(4)
memory usage: 3.8+ MB

③现在我们来看看这个数据集是否包含任何空值:

data.isnull().sum()
ID                             0
Delivery_person_ID             0
Delivery_person_Age            0
Delivery_person_Ratings        0
Restaurant_latitude            0
Restaurant_longitude           0
Delivery_location_latitude     0
Delivery_location_longitude    0
Type_of_order                  0
Type_of_vehicle                0
Time_taken(min)                0
dtype: int64

数据集没有任何空值。让我们继续!

2. 计算两个经纬度之间的距离

数据集没有任何特征可以显示餐厅和送餐地点之间的差异。我们只有餐厅和送餐地点的经纬度点。我们可以使用哈弗辛公式,根据两个地点的经纬度计算它们之间的距离。

下面是我们如何根据餐厅和外卖地点的经纬度,利用哈弗辛公式求出它们之间的距离:

# Set the earth's radius (in kilometers)
R = 6371# Convert degrees to radians
def deg_to_rad(degrees):return degrees * (np.pi/180)# Function to calculate the distance between two points using the haversine formula
def distcalculate(lat1, lon1, lat2, lon2):d_lat = deg_to_rad(lat2-lat1)d_lon = deg_to_rad(lon2-lon1)a = np.sin(d_lat/2)**2 + np.cos(deg_to_rad(lat1)) * np.cos(deg_to_rad(lat2)) * np.sin(d_lon/2)**2c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a))return R * c# Calculate the distance between each pair of points
data['distance'] = np.nanfor i in range(len(data)):data.loc[i, 'distance'] = distcalculate(data.loc[i, 'Restaurant_latitude'], data.loc[i, 'Restaurant_longitude'], data.loc[i, 'Delivery_location_latitude'], data.loc[i, 'Delivery_location_longitude'])

现在,我们已经计算出餐厅与送餐地点之间的距离。我们还在数据集中添加了一个新特征,即距离。让我们再次查看数据集:

print(data.head())
     ID Delivery_person_ID  Delivery_person_Age  Delivery_person_Ratings  \
0  4607     INDORES13DEL02                   37                      4.9   
1  B379     BANGRES18DEL02                   34                      4.5   
2  5D6D     BANGRES19DEL01                   23                      4.4   
3  7A6A    COIMBRES13DEL02                   38                      4.7   
4  70A2     CHENRES12DEL01                   32                      4.6   Restaurant_latitude  Restaurant_longitude  Delivery_location_latitude  \
0            22.745049             75.892471                   22.765049   
1            12.913041             77.683237                   13.043041   
2            12.914264             77.678400                   12.924264   
3            11.003669             76.976494                   11.053669   
4            12.972793             80.249982                   13.012793   Delivery_location_longitude Type_of_order Type_of_vehicle  Time_taken(min)  \
0                    75.912471        Snack      motorcycle                24   
1                    77.813237        Snack         scooter                33   
2                    77.688400       Drinks      motorcycle                26   
3                    77.026494       Buffet      motorcycle                21   
4                    80.289982        Snack         scooter                30   distance  
0   3.025149  
1  20.183530  
2   1.552758  
3   7.790401  
4   6.210138  

3. 探索性分析

3.1 送餐距离和送餐时间

现在,让我们探索数据,找出特征之间的关系。我先来看看送餐距离和送餐时间之间的关系:

figure = px.scatter(data_frame = data, x="distance",y="Time_taken(min)", size="Time_taken(min)", trendline="ols", title = "Relationship Between Distance and Time Taken")
figure.show()

特征关系
送餐时间与送餐距离之间存在一致的关系。也就是说,无论距离远近,大多数送餐员都能在 25-30 分钟内送达食物。

3.2 送餐时间与送餐员年龄

现在我们来看看送餐时间与送餐员年龄之间的关系:

figure = px.scatter(data_frame = data, x="Delivery_person_Age",y="Time_taken(min)", size="Time_taken(min)", color = "distance",trendline="ols", title = "Relationship Between Time Taken and Age")
figure.show()

特征关系
送餐时间与送餐员的年龄呈线性关系。这意味着年轻的送餐员比年长的送餐员用时更短。

3.3 送餐时间与送餐员评级

现在让我们来看看送餐时间与送餐员评级之间的关系:

figure = px.scatter(data_frame = data, x="Delivery_person_Ratings",y="Time_taken(min)", size="Time_taken(min)", color = "distance",trendline="ols", title = "Relationship Between Time Taken and Ratings")
figure.show()

特征关系
送餐时间与送餐员的评分之间存在反向线性关系。也就是说,与评分低的送餐员相比,评分高的送餐员送餐时间更短。

3.4 食物类型与车辆类型

现在我们来看看顾客订购的食物类型和送餐员使用的车辆类型是否会影响送餐时间:

fig = px.box(data, x="Type_of_vehicle",y="Time_taken(min)", color="Type_of_order")
fig.show()

特征描述
因此,送餐员所花费的时间并不会因为他们所驾驶的车辆和所运送的食品类型而有太大差异。

因此,根据我们的分析,对送餐时间影响最大的特征是:

  • 送餐员的年龄
  • 送餐员的评级
  • 餐厅与送餐地点之间的距离

4. 时间预测模型

4.1 准备数据

将数据拆分为训练集和测试集

#splitting data
from sklearn.model_selection import train_test_split
x = np.array(data[["Delivery_person_Age", "Delivery_person_Ratings", "distance"]])
y = np.array(data[["Time_taken(min)"]])
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.10, random_state=42)

4.2 构建模型(LSTM)

现在,让我们使用 LSTM 神经网络模型来训练一个机器学习模型,以完成送餐时间预测任务:

# creating the LSTM neural network model
from keras.models import Sequential
from keras.layers import Input, Dense, LSTMmodel = Sequential([Input(shape=(xtrain.shape[1], 1)),LSTM(128, return_sequences=True),LSTM(64, return_sequences=False),Dense(25),Dense(1)
])model.compile(optimizer='adam', loss='mean_squared_error')
model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ lstm (LSTM)(None, 3, 128)66,560 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ lstm_1 (LSTM)(None, 64)49,408 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense (Dense)(None, 25)1,625 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_1 (Dense)(None, 1)26 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘Total params: 117,619 (459.45 KB)Trainable params: 117,619 (459.45 KB)Non-trainable params: 0 (0.00 B)

4.3 模型训练

model.fit(xtrain, ytrain, batch_size=1, epochs=9)
Epoch 1/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 65s 2ms/step - loss: 78.0635
Epoch 2/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 65.2568
Epoch 3/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 61.7881
Epoch 4/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 60.5413
Epoch 5/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 60.2824
Epoch 6/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 59.3861
Epoch 7/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 59.8831
Epoch 8/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 62s 2ms/step - loss: 59.0806
Epoch 9/9
41033/41033 ━━━━━━━━━━━━━━━━━━━━ 63s 2ms/step - loss: 59.7611

4.4 模型评估

现在,让我们通过输入来预测送餐时间,从而测试模型的性能:

print("Food Delivery Time Prediction")
a = int(input("Age of Delivery Partner: "))
b = float(input("Ratings of Previous Deliveries: "))
c = int(input("Total Distance: "))features = np.array([[a, b, c]])
print("Predicted Delivery Time in Minutes = ", model.predict(features))
Food Delivery Time Prediction
Age of Delivery Partner:  29
Ratings of Previous Deliveries:  2.9
Total Distance:  6
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 155ms/step
Predicted Delivery Time in Minutes =  [[35.726112]]

5. 总结

要实时预测食品配送时间,需要计算食品准备点与食品消费点之间的距离。在找到餐厅和送餐地点之间的距离后,您需要找到送餐员过去在相同距离内的送餐时间之间的关系。希望您喜欢这篇关于使用 Python 进行机器学习预测送餐时间的文章。

http://www.15wanjia.com/news/185378.html

相关文章:

  • 做游戏的网站有哪些内容wordpress 投票 评分 插件
  • 嘉兴建设公司网站wordpress账号密码都正确登陆不
  • 网站模板的制作怎么做技能培训班有哪些
  • 网站编辑器判断大连网站排名系统
  • 临清建网站兰州网站运营诊断
  • 网站导航排版布局网站建设多钱
  • 用服务器做网站做公众号要不要有自己的网站
  • 做网站最好的公新乡seo网络推广费用
  • 买了服务器主机这么做网站拜博网站建设
  • 网站域名转出公司网站建设会计处理
  • 石排做网站网站视频下载windows
  • 在线教育网站开发方案工商网站查询企业信息查询官网
  • 游戏网站风格吉林省交通建设质量监督站网站
  • 信誉好的中山网站建设手机网站建设市场报价
  • 网站维护 代码学生个人网页制作教程
  • 网站建设误区网站关键词选取的步骤
  • 国家建设部官方网站赵宏彦怎么做网站教程
  • 网站开发用什么写得比较好网站建设服务费属于什么科目
  • 应付网站软件服务怎么做分录盐城网站定制
  • 河南网站托管网站制作cms
  • 北京企业建站化工网站开发
  • 厦门市建设局综合业务平台网站网站 功能需求
  • 石景山网站建设设计公司郑州商城网站开发
  • 比较有名的网站建设平台网络营销方式分析
  • 网站安全制度体系的建设情况义县网站建设
  • 网站制作与维护费用建一个自己用的网站要多少钱
  • 广告图片网站小加工厂做网站
  • 做英文网站用什么源码国内做外单的网站有哪些
  • 手机网站管理系统网站建设捌金手指花总二七
  • 有批量做基因结构的网站吗公司网站怎么做简介