当前位置: 首页 > news >正文

太原站扩建后的规模域名第二年续费价格

太原站扩建后的规模,域名第二年续费价格,黑帽seo教程,超级简历模板官网文章目录 特征检测的基本概念Harris角点检测Shi-Tomasi角点检测SIFT关键点检测SIFT计算描述子SURF特征检测OBR特征检测暴力特征匹配FLANN特征匹配实战flann特征匹配图像查找图像拼接基础知识图像拼接实战 特征点检测与匹配是计算机视觉中非常重要的内容。不是所有图像操作都是对…

文章目录

  • 特征检测的基本概念
  • Harris角点检测
  • Shi-Tomasi角点检测
  • SIFT关键点检测
  • SIFT计算描述子
  • SURF特征检测
  • OBR特征检测
  • 暴力特征匹配
  • FLANN特征匹配
  • 实战flann特征匹配
  • 图像查找
  • 图像拼接基础知识
  • 图像拼接实战

特征点检测与匹配是计算机视觉中非常重要的内容。不是所有图像操作都是对每个像素进行处理,有些只需使用4个顶点即可,如图像的拼接、二维码定位等

特征检测的基本概念

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Harris角点检测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
详情见官方参考文档
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npblockSize = 2
ksize = 3
k = 0.04img = cv2.imread('./chess.png')# 灰度化
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# Harris角点检测
dst = cv2.cornerHarris(gray, blockSize, ksize, k)# Harris角点展示
img[dst > 0.01 * dst.max()] = [0, 255, 0]cv2.imshow('harris', img)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述

Shi-Tomasi角点检测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
距离越大检测到的角数越少,距离越小检测到的角数越多

# -*- coding: utf-8 -*-
import cv2
import numpy as np# Harris
# blockSize = 2
# ksize = 3
# k = 0.04# Shi-Tomasi
maxCorners = 1000
ql = 0.01
minDistance = 10img = cv2.imread('./chess.png')# 灰度化
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# Harris角点检测
# dst = cv2.cornerHarris(gray, blockSize, ksize, k)# Harris角点展示
# img[dst > 0.01 * dst.max()] = [0, 255, 0]corners = cv2.goodFeaturesToTrack(gray, maxCorners, ql, minDistance)corners = np.int0(corners)for i in corners:x, y = i.ravel()cv2.circle(img, (x, y), 3, (0, 255, 0), -1)cv2.imshow('Tomasi', img)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述

SIFT关键点检测

详情见官方文档
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

The distinguishing qualities of an image that make it stand out are referred to as key points in an image. The key points of a particular image let us recognize objects and compare images. Detecting critical spots in a picture may be done using a variety of techniques and algorithms. We utilize the drawKeypoints() method in OpenCV to be able to draw the identified key points on a given picture. The input picture, keypoints, color, and flag are sent to the drawKeypoints() method. key points are the most important aspects of the detection. Even after the image is modified the key points remain the same. As of now, we can only use the SIRF_create() function as the surf function is patented.

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = cv2.imread('./chess.png')
# 灰度化
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 创建SIFT对象
sift = cv2.xfeatures2d.SIFT_create()
# 进行检测
kp = sift.detect(gray, None)# 绘制keypoints
cv2.drawKeypoints(gray, kp, img)cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述

  1. sift = cv2.xfeatures2d.SIFT_create() 实例化
    参数说明:sift为实例化的sift函数

  2. kp = sift.detect(gray, None) 找出图像中的关键点
    参数说明: kp表示生成的关键点,gray表示输入的灰度图,

  3. ret = cv2.drawKeypoints(gray, kp, img) 在图中画出关键点
    参数说明:gray表示输入图片, kp表示关键点,img表示输出的图片

  4. kp, dst = sift.compute(kp) 计算关键点对应的sift特征向量
    参数说明:kp表示输入的关键点,dst表示输出的sift特征向量,通常是128维的

SIFT计算描述子

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = cv2.imread('./chess.png')
# 灰度化
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 创建SIFT对象
sift = cv2.xfeatures2d.SIFT_create()
# 进行检测
kp, des = sift.detectAndCompute(gray, None)print(des)# 绘制keypoints
cv2.drawKeypoints(gray, kp, img)cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

SURF特征检测

在这里插入图片描述
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = cv2.imread('./chess.png')
# 灰度化
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 创建SIFT对象
# sift = cv2.xfeatures2d.SIFT_create()# 创建SURF对象
surf = cv2.xfeatures2d.SURF.create()# 进行检测
# kp, des = sift.detectAndCompute(gray, None)
kp, des = surf.detectAndCompute(gray, None)# print(des[0])# 绘制keypoints
cv2.drawKeypoints(gray, kp, img)cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述
好消息,SURF付费了,不是开源的接口了,需要大家自己造轮子,写新的好算法!

OBR特征检测

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg = cv2.imread('./chess.png')
# 灰度化
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 创建SIFT对象
# sift = cv2.xfeatures2d.SIFT_create()# 创建SURF对象
# surf = cv2.xfeatures2d.SURF.create()# 创建ORB对象
orb = cv2.ORB_create()# 进行检测
# kp, des = sift.detectAndCompute(gray, None)
# kp, des = surf.detectAndCompute(gray, None)
kp, des = orb.detectAndCompute(gray, None)# print(des[0])# 绘制keypoints
cv2.drawKeypoints(gray, kp, img)cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述

暴力特征匹配

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as np# img = cv2.imread('./chess.png')
img1 = cv2.imread('./opencv_search.png')
img2 = cv2.imread('./opencv_orig.png')# 灰度化
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)# create SIFT feature extractor
# 创建SIFT对象
sift = cv2.xfeatures2d.SIFT_create()# 创建SURF对象
# surf = cv2.xfeatures2d.SURF.create()# 创建ORB对象
orb = cv2.ORB_create()# detect features from the image
# 进行检测
# kp, des = sift.detectAndCompute(gray, None)
# kp, des = surf.detectAndCompute(gray, None)
# kp, des = orb.detectAndCompute(gray, None)# draw the detected key points
kp1, des1 = sift.detectAndCompute(gray1, None)
kp2, des2 = sift.detectAndCompute(gray2, None)# print(des[0])# 绘制keypoints
# cv2.drawKeypoints(gray, kp, img)# 创建匹配器
bf = cv2.BFMatcher(cv2.NORM_L1)
match = bf.match(des1, des2)img3 = cv2.drawMatches(img1, kp1, img2, kp2, match, None)cv2.imshow('img', img3)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述

FLANN特征匹配

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实战flann特征匹配

参考的官网手册

# -*- coding: utf-8 -*-
import cv2
import numpy as np# queryImage
img1 = cv2.imread('./opencv_search.png')
# trainImage
img2 = cv2.imread('./opencv_orig.png')# 灰度化
g1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
g2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)# 创建SIFT特征检测器
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()# 计算描述子与特征点
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(g1, None)
kp2, des2 = sift.detectAndCompute(g2, None)# 创建匹配器
# FLANN parameters
index_params = dict(algorithm = 1, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)# 对描述子进行匹配计算
matchs = flann.knnMatch(des1, des2, k = 2)good = []
# ratio test as per Lowe's paper
for i, (m, n) in enumerate(matchs):if m.distance < 0.7 * n.distance:good.append(m)ret = cv2.drawMatchesKnn(img1, kp1, img2, kp2, [good], None)cv2.imshow('res', ret)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述

图像查找

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as npimg1 = cv2.imread('./opencv_search.png')
img2 = cv2.imread('./opencv_orig.png')MIN_MATCH_COUNT = 4# 灰度化
g1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
g2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)# 创建SIFT特征检测器
sift = cv2.xfeatures2d.SIFT_create()# 计算描述子与特征点
kp1, des1 = sift.detectAndCompute(g1, None)
kp2, des2 = sift.detectAndCompute(g2, None)# 创建匹配器
index_params = dict(algorithm = 1, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)# 对描述子进行匹配计算
matchs = flann.knnMatch(des1, des2, k = 2)good = []
for i, (m, n) in enumerate(matchs):if m.distance < 0.7 * n.distance:good.append(m)if len(good) >= MIN_MATCH_COUNT:src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)h,w = img1.shape[:2]pts = np.float32([ [0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]).reshape(-1,1,2)dst = cv2.perspectiveTransform(pts, M)cv2.polylines(img2, [np.int32(dst)], True, (0, 255, 0))
else:print('the number of good is less than 4.')exit()ret = cv2.drawMatchesKnn(img1, kp1, img2, kp2, [good], None)cv2.imshow('res', ret)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述

图像拼接基础知识

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(0,0)是第二张图的左上角
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

图像拼接实战

# -*- coding: utf-8 -*-
import cv2
import numpy as np#第一步,读取文件,将图片设置成一样大小640x480
#第二步,找特征点,描述子,计算单应性矩阵
#第三步,根据单应性矩阵对图像进行变换,然后平移
#第四步,拼接并输出最终结果img1 = cv2.imread('map1.png')
img2 = cv2.imread('map2.png')img1 = cv2.resize(img1, (640, 480))
img2 = cv2.resize(img2, (640, 480))inputs = np.hstack((img1, img2))
cv2.imshow('input_img', inputs)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as np#第一步,读取文件,将图片设置成一样大小640x480
#第二步,找特征点,描述子,计算单应性矩阵
#第三步,根据单应性矩阵对图像进行变换,然后平移
#第四步,拼接并输出最终结果MIN_MATCH_COUNT = 8def stitch_image(img1, img2, H):# 1. 获得每张图片的四个角点# 2. 对图片进行变换(单应性矩阵使图进行旋转,平移)# 3. 创建一张大图,将两张图拼接到一起# 4. 将结果输出#获得原始图的高/宽h1, w1 = img1.shape[:2]h2, w2 = img2.shape[:2]img1_dims = np.float32([[0,0], [0, h1], [w1, h1], [w1, 0]]).reshape(-1, 1, 2)img2_dims = np.float32([[0,0], [0, h2], [w2, h2], [w2, 0]]).reshape(-1, 1, 2)img1_transform = cv2.perspectiveTransform(img1_dims, H)print(img1_dims)print(img2_dims)print(img1_transform)def get_homo(img1, img2):#1. 创建特征转换对象#2. 通过特征转换对象获得特征点和描述子#3. 创建特征匹配器#4. 进行特征匹配#5. 过滤特征,找出有效的特征匹配点# 创建SIFT特征检测器sift = cv2.xfeatures2d.SIFT_create()# 计算描述子与特征点kp1, des1 = sift.detectAndCompute(img1, None)kp2, des2 = sift.detectAndCompute(img2, None)# 创建特征匹配器bf = cv2.BFMatcher()# 对描述子进行匹配计算matchs = bf.knnMatch(des1, des2, k = 2)verify_matches = []for i, (m, n) in enumerate(matchs):if m.distance < 0.8 * n.distance:verify_matches.append(m)if len(verify_matches) > MIN_MATCH_COUNT:img1_pts = []img2_pts = []for m in verify_matches:img1_pts.append(kp1[m.queryIdx].pt)img2_pts.append(kp2[m.trainIdx].pt)#[(x1, y1), (x2, y2), ...]#[[x1, y1], [x2, y2], ...]    img1_pts = np.float32(img1_pts).reshape(-1, 1, 2)img2_pts = np.float32(img2_pts).reshape(-1, 1, 2)# 获取单应性矩阵H, mask = cv2.findHomography(img1_pts, img2_pts, cv2.RANSAC, 5.0)return Helse:print('err: Not enough matches!')exit()img1 = cv2.imread('map1.png')
img2 = cv2.imread('map2.png')img1 = cv2.resize(img1, (640, 480))
img2 = cv2.resize(img2, (640, 480))inputs = np.hstack((img1, img2))#获得单应性矩阵
H = get_homo(img1, img2)#进行图像拼接
result_image = stitch_image(img1, img2, H)cv2.imshow('input_img', inputs)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as np#第一步,读取文件,将图片设置成一样大小640x480
#第二步,找特征点,描述子,计算单应性矩阵
#第三步,根据单应性矩阵对图像进行变换,然后平移
#第四步,拼接并输出最终结果MIN_MATCH_COUNT = 8def stitch_image(img1, img2, H):# 1. 获得每张图片的四个角点# 2. 对图片进行变换(单应性矩阵使图进行旋转,平移)# 3. 创建一张大图,将两张图拼接到一起# 4. 将结果输出#获得原始图的高/宽h1, w1 = img1.shape[:2]h2, w2 = img2.shape[:2]img1_dims = np.float32([[0,0], [0, h1], [w1, h1], [w1, 0]]).reshape(-1, 1, 2)img2_dims = np.float32([[0,0], [0, h2], [w2, h2], [w2, 0]]).reshape(-1, 1, 2)img1_transform = cv2.perspectiveTransform(img1_dims, H)# print(img1_dims)# print(img2_dims)# print(img1_transform)result_dims = np.concatenate((img2_dims, img1_transform), axis=0)# print(result_dims)[x_min, y_min] = np.int32(result_dims.min(axis=0).ravel()-0.5)[x_max, y_max ] = np.int32(result_dims.max(axis=0).ravel()+0.5)#平移的距离transform_dist = [-x_min, -y_min]result_img = cv2.warpPerspective(img1, H, (x_max-x_min, y_max-y_min))return result_imgdef get_homo(img1, img2):#1. 创建特征转换对象#2. 通过特征转换对象获得特征点和描述子#3. 创建特征匹配器#4. 进行特征匹配#5. 过滤特征,找出有效的特征匹配点# 创建SIFT特征检测器sift = cv2.xfeatures2d.SIFT_create()# 计算描述子与特征点kp1, des1 = sift.detectAndCompute(img1, None)kp2, des2 = sift.detectAndCompute(img2, None)# 创建特征匹配器bf = cv2.BFMatcher()# 对描述子进行匹配计算matchs = bf.knnMatch(des1, des2, k = 2)verify_matches = []for i, (m, n) in enumerate(matchs):if m.distance < 0.8 * n.distance:verify_matches.append(m)if len(verify_matches) > MIN_MATCH_COUNT:img1_pts = []img2_pts = []for m in verify_matches:img1_pts.append(kp1[m.queryIdx].pt)img2_pts.append(kp2[m.trainIdx].pt)#[(x1, y1), (x2, y2), ...]#[[x1, y1], [x2, y2], ...]    img1_pts = np.float32(img1_pts).reshape(-1, 1, 2)img2_pts = np.float32(img2_pts).reshape(-1, 1, 2)# 获取单应性矩阵H, mask = cv2.findHomography(img1_pts, img2_pts, cv2.RANSAC, 5.0)return Helse:print('err: Not enough matches!')exit()img1 = cv2.imread('map1.png')
img2 = cv2.imread('map2.png')img1 = cv2.resize(img1, (640, 480))
img2 = cv2.resize(img2, (640, 480))inputs = np.hstack((img1, img2))#获得单应性矩阵
H = get_homo(img1, img2)#进行图像拼接
result_image = stitch_image(img1, img2, H)cv2.imshow('input_img', result_image)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as np#第一步,读取文件,将图片设置成一样大小640x480
#第二步,找特征点,描述子,计算单应性矩阵
#第三步,根据单应性矩阵对图像进行变换,然后平移
#第四步,拼接并输出最终结果MIN_MATCH_COUNT = 8def stitch_image(img1, img2, H):# 1. 获得每张图片的四个角点# 2. 对图片进行变换(单应性矩阵使图进行旋转,平移)# 3. 创建一张大图,将两张图拼接到一起# 4. 将结果输出#获得原始图的高/宽h1, w1 = img1.shape[:2]h2, w2 = img2.shape[:2]img1_dims = np.float32([[0,0], [0, h1], [w1, h1], [w1, 0]]).reshape(-1, 1, 2)img2_dims = np.float32([[0,0], [0, h2], [w2, h2], [w2, 0]]).reshape(-1, 1, 2)img1_transform = cv2.perspectiveTransform(img1_dims, H)# print(img1_dims)# print(img2_dims)# print(img1_transform)result_dims = np.concatenate((img2_dims, img1_transform), axis=0)# print(result_dims)[x_min, y_min] = np.int32(result_dims.min(axis=0).ravel()-0.5)[x_max, y_max ] = np.int32(result_dims.max(axis=0).ravel()+0.5)#平移的距离transform_dist = [-x_min, -y_min]#[1, 0, dx]#[0, 1, dy]         #[0, 0, 1 ]transform_array = np.array([[1, 0, transform_dist[0]],[0, 1, transform_dist[1]],[0, 0, 1]])result_img = cv2.warpPerspective(img1, transform_array.dot(H), (x_max-x_min, y_max-y_min))return result_imgdef get_homo(img1, img2):#1. 创建特征转换对象#2. 通过特征转换对象获得特征点和描述子#3. 创建特征匹配器#4. 进行特征匹配#5. 过滤特征,找出有效的特征匹配点# 创建SIFT特征检测器sift = cv2.xfeatures2d.SIFT_create()# 计算描述子与特征点kp1, des1 = sift.detectAndCompute(img1, None)kp2, des2 = sift.detectAndCompute(img2, None)# 创建特征匹配器bf = cv2.BFMatcher()# 对描述子进行匹配计算matchs = bf.knnMatch(des1, des2, k = 2)verify_matches = []for i, (m, n) in enumerate(matchs):if m.distance < 0.8 * n.distance:verify_matches.append(m)if len(verify_matches) > MIN_MATCH_COUNT:img1_pts = []img2_pts = []for m in verify_matches:img1_pts.append(kp1[m.queryIdx].pt)img2_pts.append(kp2[m.trainIdx].pt)#[(x1, y1), (x2, y2), ...]#[[x1, y1], [x2, y2], ...]    img1_pts = np.float32(img1_pts).reshape(-1, 1, 2)img2_pts = np.float32(img2_pts).reshape(-1, 1, 2)# 获取单应性矩阵H, mask = cv2.findHomography(img1_pts, img2_pts, cv2.RANSAC, 5.0)return Helse:print('err: Not enough matches!')exit()img1 = cv2.imread('map1.png')
img2 = cv2.imread('map2.png')img1 = cv2.resize(img1, (640, 480))
img2 = cv2.resize(img2, (640, 480))inputs = np.hstack((img1, img2))#获得单应性矩阵
H = get_homo(img1, img2)#进行图像拼接
result_image = stitch_image(img1, img2, H)cv2.imshow('input_img', result_image)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
import numpy as np#第一步,读取文件,将图片设置成一样大小640x480
#第二步,找特征点,描述子,计算单应性矩阵
#第三步,根据单应性矩阵对图像进行变换,然后平移
#第四步,拼接并输出最终结果MIN_MATCH_COUNT = 8def stitch_image(img1, img2, H):# 1. 获得每张图片的四个角点# 2. 对图片进行变换(单应性矩阵使图进行旋转,平移)# 3. 创建一张大图,将两张图拼接到一起# 4. 将结果输出#获得原始图的高/宽h1, w1 = img1.shape[:2]h2, w2 = img2.shape[:2]img1_dims = np.float32([[0,0], [0, h1], [w1, h1], [w1, 0]]).reshape(-1, 1, 2)img2_dims = np.float32([[0,0], [0, h2], [w2, h2], [w2, 0]]).reshape(-1, 1, 2)img1_transform = cv2.perspectiveTransform(img1_dims, H)# print(img1_dims)# print(img2_dims)# print(img1_transform)result_dims = np.concatenate((img2_dims, img1_transform), axis=0)# print(result_dims)[x_min, y_min] = np.int32(result_dims.min(axis=0).ravel()-0.5)[x_max, y_max ] = np.int32(result_dims.max(axis=0).ravel()+0.5)#平移的距离transform_dist = [-x_min, -y_min]# 齐次坐标#[1, 0, dx]#[0, 1, dy]         #[0, 0, 1 ]transform_array = np.array([[1, 0, transform_dist[0]],[0, 1, transform_dist[1]],[0, 0, 1]])result_img = cv2.warpPerspective(img1, transform_array.dot(H), (x_max-x_min, y_max-y_min))result_img[transform_dist[1]:transform_dist[1]+h2, transform_dist[0]:transform_dist[0]+w2] = img2return result_imgdef get_homo(img1, img2):#1. 创建特征转换对象#2. 通过特征转换对象获得特征点和描述子#3. 创建特征匹配器#4. 进行特征匹配#5. 过滤特征,找出有效的特征匹配点# 创建SIFT特征检测器sift = cv2.xfeatures2d.SIFT_create()# 计算描述子与特征点kp1, des1 = sift.detectAndCompute(img1, None)kp2, des2 = sift.detectAndCompute(img2, None)# 创建特征匹配器bf = cv2.BFMatcher()# 对描述子进行匹配计算matchs = bf.knnMatch(des1, des2, k = 2)verify_matches = []for i, (m, n) in enumerate(matchs):if m.distance < 0.8 * n.distance:verify_matches.append(m)if len(verify_matches) > MIN_MATCH_COUNT:img1_pts = []img2_pts = []for m in verify_matches:img1_pts.append(kp1[m.queryIdx].pt)img2_pts.append(kp2[m.trainIdx].pt)#[(x1, y1), (x2, y2), ...]#[[x1, y1], [x2, y2], ...]    img1_pts = np.float32(img1_pts).reshape(-1, 1, 2)img2_pts = np.float32(img2_pts).reshape(-1, 1, 2)# 获取单应性矩阵H, mask = cv2.findHomography(img1_pts, img2_pts, cv2.RANSAC, 5.0)return Helse:print('err: Not enough matches!')exit()img1 = cv2.imread('map1.png')
img2 = cv2.imread('map2.png')img1 = cv2.resize(img1, (640, 480))
img2 = cv2.resize(img2, (640, 480))inputs = np.hstack((img1, img2))#获得单应性矩阵
H = get_homo(img1, img2)#进行图像拼接
result_image = stitch_image(img1, img2, H)cv2.imshow('input_img', result_image)
if cv2.waitKey(0) & 0xff == 27:cv2.destroyAllWindows()

在这里插入图片描述

之后我会持续更新,如果喜欢我的文章,请记得一键三连哦,点赞关注收藏,你的每一个赞每一份关注每一次收藏都将是我前进路上的无限动力 !!!↖(▔▽▔)↗感谢支持!

http://www.15wanjia.com/news/184739.html

相关文章:

  • 网站哪些功能是PHP做的网站维护花费
  • 网站的注册和登录怎么做外贸网站示例
  • 哪里可以做公司网站平面设计图数字标识
  • 网站建设与优化湛江网站建设咨询
  • 江苏做网站南宁seo计费管理
  • seo站长综合查询工具邯郸开发网站有哪些
  • vue做的手机网站wordpress一直加载
  • 住房城乡建设网站怎样创作一个网站
  • 千图主站与普通网站的区别python免费自学网站
  • 平面毕业设计作品网站重庆做网站好的公司
  • 深圳响应式设计企业网站上海工商网上办事平台
  • 网页制作免费的素材网站网站空间免费试用
  • 做海报有什么好的网站推荐网络营销的途径有哪些
  • 成都天府新区网站建设电子商务网站推广计划书
  • 电影网站备案ic手机网站开发平台
  • 网站页面怎么算如何做文档附网站
  • 谷歌英文网站推广网站建设需要域名
  • 天津做网站的费用网站开发小图标
  • 建网站需要哪些文件夹网站建设个人主页图
  • 临邑网站制作信息流优化师简历怎么写
  • 郑州服装网站建设先看网站案例您的网站也可以这么做
  • 福永自适应网站建设企业管理培训课程百度云
  • 网站群内容管理系统郑州资助app下载
  • 做一个网站每年多少钱wap网站建设方案
  • 网站开启伪静态3d演示中国空间站建造历程
  • 赤风设计网站wordpress 插件 页面
  • 网站建设研究意义网站首页做一点开有动画
  • 网站开发的技术难点wordpress文章和博客的区别
  • 网站建设质量要求陕西省住房和城乡建设厅网站上查询
  • 广州移动 网站设计做百度移动网站点击