当前位置: 首页 > news >正文

怎样php网站建设wordpress 大型网站吗

怎样php网站建设,wordpress 大型网站吗,自己做的网站怎么搜不到,老河口网站1.项目说明 **选用Close和Low两个特征,使用窗口time_steps窗口的2个特征,然后预测Close这一个特征数据未来一天的数据 当batch_firstTrue,则LSTM的inputs(batch_size,time_steps,input_size) batch_size len(data)-time_steps time_steps 滑动窗口&…

1.项目说明

**选用Close和Low两个特征,使用窗口time_steps窗口的2个特征,然后预测Close这一个特征数据未来一天的数据

当batch_first=True,则LSTM的inputs=(batch_size,time_steps,input_size)

batch_size = len(data)-time_steps
time_steps = 滑动窗口,本项目中值为lookback
input_size = 2【因为选取了Close和Low两个特征】**

2.数据集

参考:https://blog.csdn.net/qq_38633279/article/details/134245512?spm=1001.2014.3001.5501中的数据集

3.数据预处理

3.1 读取数据

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
import torch
import torch.nn as nn
import seaborn as sns
import math, time
from sklearn.metrics import mean_squared_errorfilepath = './data/rlData.csv'
data = pd.read_csv(filepath)
data = data.sort_values('Date')
data.head()
data.shapesns.set_style("darkgrid")
plt.figure(figsize = (15,9))
plt.plot(data[['Close']])
plt.xticks(range(0,data.shape[0],20), data['Date'].loc[::20], rotation=45)
plt.title("****** Stock Price",fontsize=18, fontweight='bold')
plt.xlabel('Date',fontsize=18)
plt.ylabel('Close Price (USD)',fontsize=18)
plt.show()

3.2 选取Close和Low两个特征

price = data[['Close', 'Low']]

3.3 数据归一化

scaler = MinMaxScaler(feature_range=(-1, 1))
price['Close'] = scaler.fit_transform(price['Close'].values.reshape(-1,1))
price['Low'] = scaler.fit_transform(price['Low'].values.reshape(-1,1))

3.4 数据集的制造[batch_size,time_steps,input_size]

本次选取2个维度特征作为输出,因此,input_size =2
x_train.shape = [batch_size,time_steps,input_size]
y_train.shape = [batch_size,1]

1. 输入选取的是Close和Low列作为多维度的输入,所以选择的是data数据中的第一列和第二列作为x_train【因此input_size=2】
2. 输出是选取的Close列作为预测,所以选取data数据的第一列作为y_train【即Close列作为y_train】。

#2.数据集的制作
def split_data(stock, lookback):data_raw = stock.to_numpy() data = []    for index in range(len(data_raw) - lookback): data.append(data_raw[index: index + lookback])data = np.array(data);test_set_size = int(np.round(0.2 * data.shape[0]))train_set_size = data.shape[0] - (test_set_size)x_train = data[:train_set_size,:-1,:]  #x_train.shape =  (198, 4, 2)y_train = data[:train_set_size,-1,0:1] #y_train.shape =  (198, 1)x_test = data[train_set_size:,:-1,:]   #x_test.shape =  (49, 4, 2)y_test = data[train_set_size:,-1,0:1]  #y_test.shape =  (49, 1)return [torch.Tensor(x_train), torch.Tensor(y_train), torch.Tensor(x_test),torch.Tensor(y_test)]lookback = 5
x_train, y_train, x_test, y_test = split_data(price, lookback)
print('x_train.shape = ',x_train.shape)
print('y_train.shape = ',y_train.shape)
print('x_test.shape = ',x_test.shape)
print('y_test.shape = ',y_test.shape)

4.LSTM算法

这里的LSTM算法和单维单步预测中的LSTM预测算法一模一样。只不过我们在制作数据集的时候,对于LSTM模型中输入不一样了。

class LSTM(nn.Module):def __init__(self, input_dim, hidden_dim, num_layers, output_dim):super(LSTM, self).__init__()self.hidden_dim = hidden_dimself.num_layers = num_layersself.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)self.fc = nn.Linear(hidden_dim, output_dim)def forward(self, x):h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))out = self.fc(out[:, -1, :]) 

5.预训练

input_dim = 2
hidden_dim = 32
num_layers = 2
output_dim = 1
num_epochs = 100model = LSTM(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers)
criterion = torch.nn.MSELoss()
optimiser = torch.optim.Adam(model.parameters(), lr=0.01)hist = np.zeros(num_epochs)
lstm = []for t in range(num_epochs):y_train_pred = model(x_train)loss = criterion(y_train_pred, y_train)hist[t] = loss.item()# print("Epoch ", t, "MSE: ", loss.item())optimiser.zero_grad()loss.backward()optimiser.step()

6.绘制预测值和真实值拟合图形,以及loss图形

predict = pd.DataFrame(scaler.inverse_transform(y_train_pred.detach().numpy()))
original = pd.DataFrame(scaler.inverse_transform(y_train.detach().numpy()))sns.set_style("darkgrid")    fig = plt.figure()
fig.subplots_adjust(hspace=0.2, wspace=0.2)plt.subplot(1, 2, 1)
ax = sns.lineplot(x = original.index, y = original[0], label="Data", color='royalblue')
ax = sns.lineplot(x = predict.index, y = predict[0], label="Training Prediction (LSTM)", color='tomato')
ax.set_title('Stock price', size = 14, fontweight='bold')
ax.set_xlabel("Days", size = 14)
ax.set_ylabel("Cost (USD)", size = 14)
ax.set_xticklabels('', size=10)plt.subplot(1, 2, 2)
ax = sns.lineplot(data=hist, color='royalblue')
ax.set_xlabel("Epoch", size = 14)
ax.set_ylabel("Loss", size = 14)
ax.set_title("Training Loss", size = 14, fontweight='bold')
fig.set_figheight(6)
fig.set_figwidth(16)# make predictions
y_test_pred = model(x_test)# invert predictions
y_train_pred = scaler.inverse_transform(y_train_pred.detach().numpy())
y_train = scaler.inverse_transform(y_train.detach().numpy())
y_test_pred = scaler.inverse_transform(y_test_pred.detach().numpy())
y_test = scaler.inverse_transform(y_test.detach().numpy())# calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(y_train[:,0], y_train_pred[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(y_test[:,0], y_test_pred[:,0]))
print('Test Score: %.2f RMSE' % (testScore))
lstm.append(trainScore)
lstm.append(testScore)
lstm.append(training_time)

完整代码

问题描述:
选用Close和Low两个特征,使用窗口time_steps窗口的2个特征,然后预测Close这一个特征数据未来一天的数据
当batch_first=True,则LSTM的inputs=(batch_size,time_steps,input_size)
batch_size = len(data)-time_steps
time_steps = 滑动窗口,本项目中值为lookback
input_size = 2【因为选取了Close和Low两个特征】
#%%
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
import torch
import torch.nn as nn
import seaborn as sns
import math, time
from sklearn.metrics import mean_squared_errorfilepath = './data/rlData.csv'
data = pd.read_csv(filepath)
data = data.sort_values('Date')
data.head()
data.shapesns.set_style("darkgrid")
plt.figure(figsize = (15,9))
plt.plot(data[['Close']])
plt.xticks(range(0,data.shape[0],20), data['Date'].loc[::20], rotation=45)
plt.title("****** Stock Price",fontsize=18, fontweight='bold')
plt.xlabel('Date',fontsize=18)
plt.ylabel('Close Price (USD)',fontsize=18)
plt.show()#1.选取特征工程2个
price = data[['Close', 'Low']]scaler = MinMaxScaler(feature_range=(-1, 1))
price['Close'] = scaler.fit_transform(price['Close'].values.reshape(-1,1))
price['Low'] = scaler.fit_transform(price['Low'].values.reshape(-1,1))#2.数据集的制作
def split_data(stock, lookback):data_raw = stock.to_numpy() data = []    for index in range(len(data_raw) - lookback): data.append(data_raw[index: index + lookback])data = np.array(data);test_set_size = int(np.round(0.2 * data.shape[0]))train_set_size = data.shape[0] - (test_set_size)x_train = data[:train_set_size,:-1,:]  #x_train.shape =  (198, 4, 2)y_train = data[:train_set_size,-1,0:1] #y_train.shape =  (198, 1)x_test = data[train_set_size:,:-1,:]   #x_test.shape =  (49, 4, 2)y_test = data[train_set_size:,-1,0:1]  #y_test.shape =  (49, 1)return [torch.Tensor(x_train), torch.Tensor(y_train), torch.Tensor(x_test),torch.Tensor(y_test)]lookback = 5
x_train, y_train, x_test, y_test = split_data(price, lookback)
print('x_train.shape = ',x_train.shape)
print('y_train.shape = ',y_train.shape)
print('x_test.shape = ',x_test.shape)
print('y_test.shape = ',y_test.shape)class LSTM(nn.Module):def __init__(self, input_dim, hidden_dim, num_layers, output_dim):super(LSTM, self).__init__()self.hidden_dim = hidden_dimself.num_layers = num_layersself.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)self.fc = nn.Linear(hidden_dim, output_dim)def forward(self, x):h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))out = self.fc(out[:, -1, :]) return outinput_dim = 2
hidden_dim = 32
num_layers = 2
output_dim = 1
num_epochs = 100model = LSTM(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers)
criterion = torch.nn.MSELoss()
optimiser = torch.optim.Adam(model.parameters(), lr=0.01)hist = np.zeros(num_epochs)
lstm = []for t in range(num_epochs):y_train_pred = model(x_train)loss = criterion(y_train_pred, y_train)hist[t] = loss.item()# print("Epoch ", t, "MSE: ", loss.item())optimiser.zero_grad()loss.backward()optimiser.step()predict = pd.DataFrame(scaler.inverse_transform(y_train_pred.detach().numpy()))
original = pd.DataFrame(scaler.inverse_transform(y_train.detach().numpy()))sns.set_style("darkgrid")    fig = plt.figure()
fig.subplots_adjust(hspace=0.2, wspace=0.2)plt.subplot(1, 2, 1)
ax = sns.lineplot(x = original.index, y = original[0], label="Data", color='royalblue')
ax = sns.lineplot(x = predict.index, y = predict[0], label="Training Prediction (LSTM)", color='tomato')
ax.set_title('Stock price', size = 14, fontweight='bold')
ax.set_xlabel("Days", size = 14)
ax.set_ylabel("Cost (USD)", size = 14)
ax.set_xticklabels('', size=10)plt.subplot(1, 2, 2)
ax = sns.lineplot(data=hist, color='royalblue')
ax.set_xlabel("Epoch", size = 14)
ax.set_ylabel("Loss", size = 14)
ax.set_title("Training Loss", size = 14, fontweight='bold')
fig.set_figheight(6)
fig.set_figwidth(16)# make predictions
y_test_pred = model(x_test)# invert predictions
y_train_pred = scaler.inverse_transform(y_train_pred.detach().numpy())
y_train = scaler.inverse_transform(y_train.detach().numpy())
y_test_pred = scaler.inverse_transform(y_test_pred.detach().numpy())
y_test = scaler.inverse_transform(y_test.detach().numpy())# calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(y_train[:,0], y_train_pred[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(y_test[:,0], y_test_pred[:,0]))
print('Test Score: %.2f RMSE' % (testScore))
lstm.append(trainScore)
lstm.append(testScore)
lstm.append(training_time)

参考:https://gitee.com/qiangchen_sh/stock-prediction/blob/master/%E4%BB%A3%E7%A0%81/LSTM%E4%BB%8E%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80%E5%88%B0%E4%BB%A3%E7%A0%81%E5%AE%9E%E6%88%98%204%20%E5%A4%9A%E7%BB%B4%E7%89%B9%E5%BE%81%E8%82%A1%E7%A5%A8%E4%BB%B7%E6%A0%BC%E9%A2%84%E6%B5%8B_Pytorch.ipynb

http://www.15wanjia.com/news/184280.html

相关文章:

  • 专业的制作网站开发公司云商城在线下单
  • wordpress 漂浮公告整站seo哪家服务好
  • php网站开发具体的参考文献wordpress cosy
  • 怎么查网站的备案哪个网站生鲜配送做的好处
  • ps怎样做网站详情页个人网站介绍模板
  • 公司网站建设费入账大连在哪个省的什么位置
  • 如何做网站与网页常用网站推广方法
  • 云主机怎么装网站wordpress商城文章
  • 上海做兼职的网站番禺人才网站
  • 那个网站可以做公示南京建设网站排名
  • 做外贸网站哪家好潍坊公司网站模板建站
  • 做正品的网站抖音搜索优化
  • 做推广的装修网站做网站竞争大吗
  • 做网站要花多少钱做门户型网站要多少钱
  • 网站集约化建设存在的问题软件开发工程师厉害吗
  • 郏县网站制作哪家公司好搭建网站平台有前途吗
  • 美度手表网站全网营销公司排名前十
  • 城乡厅建设部网站首页域名解析官网
  • 建设网站公司那家好html评论页面模板
  • 海口网站推广公司现代感网站
  • 建设工程材料网站绍兴建设公司网站
  • 宁波 手机网站建设网站有那些风格
  • 做刷票的网站宜黄建设局网站
  • 商丘网站建设和制作建立微信群的步骤
  • 做一个官方网站多少钱wordpress 代码样式
  • 优化企业网站标题网站建设价格gxjzdrj
  • 网站首页设计布局免备案网站空间
  • 网站优化无限关键词设置国内 wordpress 大战
  • 幕墙设计培训乡网站建设十大ps培训机构
  • 商丘企业网站建设服务聊城正规网站建设公司电话