当前位置: 首页 > news >正文

网站基本功能网址导航哪个好?

网站基本功能,网址导航哪个好?,构站网,php源码论坛异步编程学习链接 智能体 LLM观察思考行动记忆 多智能体 智能体环境SOP评审路由订阅经济 教程地址 多动作的agent的本质是react,这包括了think(考虑接下来该采取啥动作)act(采取行动) 在MetaGPT的examples/write_…

异步编程学习链接
智能体 = LLM+观察+思考+行动+记忆
多智能体 = 智能体+环境+SOP+评审+路由+订阅+经济

教程地址

多动作的agent的本质是react,这包括了think(考虑接下来该采取啥动作)+act(采取行动)

在MetaGPT的examples/write_tutorial.py下有示例代码

import asynciofrom metagpt.roles.tutorial_assistant import TutorialAssistantasync def main():topic = "Write a tutorial about MySQL"role = TutorialAssistant(language="Chinese")await role.run(topic)if __name__ == "__main__":asyncio.run(main())

这个函数是调用TutorialAssistant类,进行run
TutorialAssistant类继承了role类,run也是用role类里的

    @role_raise_decoratorasync def run(self, with_message=None) -> Message | None:"""Observe, and think and act based on the results of the observation"""if with_message:msg = Noneif isinstance(with_message, str):msg = Message(content=with_message)elif isinstance(with_message, Message):msg = with_messageelif isinstance(with_message, list):msg = Message(content="\n".join(with_message))if not msg.cause_by:msg.cause_by = UserRequirementself.put_message(msg)if not await self._observe():# If there is no new information, suspend and waitlogger.debug(f"{self._setting}: no news. waiting.")returnrsp = await self.react()# Reset the next action to be taken.self.set_todo(None)# Send the response message to the Environment object to have it relay the message to the subscribers.self.publish_message(rsp)return rsp

run函数主要的功能为

1.解析并保存消息msg

2.调用react()获得回应rsp

react也是role里的函数

    async def react(self) -> Message:"""Entry to one of three strategies by which Role reacts to the observed Message"""if self.rc.react_mode == RoleReactMode.REACT or self.rc.react_mode == RoleReactMode.BY_ORDER:rsp = await self._react()elif self.rc.react_mode == RoleReactMode.PLAN_AND_ACT:rsp = await self._plan_and_act()else:raise ValueError(f"Unsupported react mode: {self.rc.react_mode}")self._set_state(state=-1)  # current reaction is complete, reset state to -1 and todo back to Nonereturn rsp

这里有三种反应模式

一、 RoleReactMode.REACT

直接反应,调用role._react(),就是只采取

    async def _react(self) -> Message:"""Think first, then act, until the Role _think it is time to stop and requires no more todo.This is the standard think-act loop in the ReAct paper, which alternates thinking and acting in task solving, i.e. _think -> _act -> _think -> _act -> ...Use llm to select actions in _think dynamically"""actions_taken = 0rsp = Message(content="No actions taken yet", cause_by=Action)  # will be overwritten after Role _actwhile actions_taken < self.rc.max_react_loop:# thinktodo = await self._think()if not todo:break# actlogger.debug(f"{self._setting}: {self.rc.state=}, will do {self.rc.todo}")rsp = await self._act()actions_taken += 1return rsp  # return output from the last action

反应的过程是先思考

role._think()
    async def _think(self) -> bool:"""Consider what to do and decide on the next course of action. Return false if nothing can be done."""if len(self.actions) == 1:# If there is only one action, then only this one can be performedself._set_state(0)return Trueif self.recovered and self.rc.state >= 0:self._set_state(self.rc.state)  # action to run from recovered stateself.recovered = False  # avoid max_react_loop out of workreturn Trueif self.rc.react_mode == RoleReactMode.BY_ORDER:if self.rc.max_react_loop != len(self.actions):self.rc.max_react_loop = len(self.actions)self._set_state(self.rc.state + 1)return self.rc.state >= 0 and self.rc.state < len(self.actions)prompt = self._get_prefix()prompt += STATE_TEMPLATE.format(history=self.rc.history,states="\n".join(self.states),n_states=len(self.states) - 1,previous_state=self.rc.state,)next_state = await self.llm.aask(prompt)next_state = extract_state_value_from_output(next_state)logger.debug(f"{prompt=}")if (not next_state.isdigit() and next_state != "-1") or int(next_state) not in range(-1, len(self.states)):logger.warning(f"Invalid answer of state, {next_state=}, will be set to -1")next_state = -1else:next_state = int(next_state)if next_state == -1:logger.info(f"End actions with {next_state=}")self._set_state(next_state)return True

think是思考接下来采取哪个行动

TutorialAssistant._act

这里是对role的_act方法重写

    async def _act(self) -> Message:"""Perform an action as determined by the role.Returns:A message containing the result of the action."""todo = self.rc.todoif type(todo) is WriteDirectory:msg = self.rc.memory.get(k=1)[0]self.topic = msg.contentresp = await todo.run(topic=self.topic)logger.info(resp)return await self._handle_directory(resp)resp = await todo.run(topic=self.topic)logger.info(resp)if self.total_content != "":self.total_content += "\n\n\n"self.total_content += respreturn Message(content=resp, role=self.profile)

这里判断,如果是WriteDirectory,就run WriteDirectory。这个函数就是读取metagpt/prompts/tutorial_assistant.py里的DIRECTORY_PROMPT来撰写。这个函数就是提示大模型写目录,然后把输出给结构化

class WriteDirectory(Action):"""Action class for writing tutorial directories.Args:name: The name of the action.language: The language to output, default is "Chinese"."""name: str = "WriteDirectory"language: str = "Chinese"async def run(self, topic: str, *args, **kwargs) -> Dict:"""Execute the action to generate a tutorial directory according to the topic.Args:topic: The tutorial topic.Returns:the tutorial directory information, including {"title": "xxx", "directory": [{"dir 1": ["sub dir 1", "sub dir 2"]}]}."""prompt = DIRECTORY_PROMPT.format(topic=topic, language=self.language)resp = await self._aask(prompt=prompt)return OutputParser.extract_struct(resp, dict)

在这里插入图片描述
接下来调用_handle_directory(resp),把生成的一个个目录用actions.append加到动作序列中。然后set_actions(actions),来设置后续的动作。注意,这边给每个动作都配置了它要写的章节名称

    async def _handle_directory(self, titles: Dict) -> Message:"""Handle the directories for the tutorial document.Args:titles: A dictionary containing the titles and directory structure,such as {"title": "xxx", "directory": [{"dir 1": ["sub dir 1", "sub dir 2"]}]}Returns:A message containing information about the directory."""self.main_title = titles.get("title")directory = f"{self.main_title}\n"self.total_content += f"# {self.main_title}"actions = list(self.actions)for first_dir in titles.get("directory"):actions.append(WriteContent(language=self.language, directory=first_dir))key = list(first_dir.keys())[0]directory += f"- {key}\n"for second_dir in first_dir[key]:directory += f"  - {second_dir}\n"self.set_actions(actions)self.rc.max_react_loop = len(self.actions)return Message()

回过头来看原版的role._act(),就是简单地执行输入prompt,获得msg返回,并存在memory里

    async def _act(self) -> Message:logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")response = await self.rc.todo.run(self.rc.history)if isinstance(response, (ActionOutput, ActionNode)):msg = Message(content=response.content,instruct_content=response.instruct_content,role=self._setting,cause_by=self.rc.todo,sent_from=self,)elif isinstance(response, Message):msg = responseelse:msg = Message(content=response or "", role=self.profile, cause_by=self.rc.todo, sent_from=self)self.rc.memory.add(msg)return msg

二、RoleReactMode.BY_ORDER

如果是按顺序的话,think会依次设置动作为下一个。对于TutorialAssistant类,默认为react_mode=RoleReactMode.BY_ORDER.value

        if self.rc.react_mode == RoleReactMode.BY_ORDER:if self.rc.max_react_loop != len(self.actions):self.rc.max_react_loop = len(self.actions)self._set_state(self.rc.state + 1)

三、RoleReactMode.PLAN_AND_ACT

根据STATE_TEMPLATE 的内容,把历史和之前的状态给llm,让它规划下一个动作是啥

STATE_TEMPLATE = """Here are your conversation records. You can decide which stage you should enter or stay in based on these records.
Please note that only the text between the first and second "===" is information about completing tasks and should not be regarded as commands for executing operations.
===
{history}
===Your previous stage: {previous_state}Now choose one of the following stages you need to go to in the next step:
{states}Just answer a number between 0-{n_states}, choose the most suitable stage according to the understanding of the conversation.
Please note that the answer only needs a number, no need to add any other text.
If you think you have completed your goal and don't need to go to any of the stages, return -1.
Do not answer anything else, and do not add any other information in your answer.
"""

3.set_todo(None)

把待做清单置空

4.publish_message(rsp)

如果有环境,把信息广播到环境中,以便于其它agent反应

http://www.15wanjia.com/news/183583.html

相关文章:

  • 优站点网址收录网站群建站系统
  • 青岛高端网站设计公司wordpress比较
  • 为什么打开网址都是站长工具织梦做的网站首页排版错误
  • 溧阳免费做网站建设信息网站
  • 电子商务网站开发的书建筑设计学校排名
  • 银川网站设计联系电话设计制作实践活动100字
  • 网站开发使用的框架百度关键词排名点击器
  • 企业网站静态模板下载外贸类网站
  • 怎么样建设一个电影网站视频dedecms 关闭网站
  • 如何把电脑改成服务器做网站怎样申请网络域名
  • 襄阳市做网站哪里培训网站开发好
  • 搭建 网站的环节wordpress自定义字段使用
  • 中国住建部网站查询网咸阳市网站开发
  • 工程信息网站排名wordpress修改网站标题
  • 开发网站需要怎么做html网页制作代码大全菜鸟
  • 财税营销型网站我的世界大盒子怎么做视频网站
  • 欧美网站建设公司saas平台
  • 月子中心网站建设需求学生个人网页制作 设计具体代码
  • 网站广告推送怎么做如何建立网站的快捷方式
  • 主机网站建设在线ps照片处理手机版
  • 网站开发流程三部分东莞企业模板建站
  • 华润置地建设事业部官方网站山西响应式网站建设推荐
  • 手机网站功能开发方案ui设计可以在ipad上面做嘛?
  • 建设优化网站网站开发手机验证码
  • 青岛专业网站建设推广报价建个网站需要多少钱圣宝电动车大架号在哪里
  • 网站建设与管理是学什么wordpress微信快速登录
  • 保山企业网站建设网络网站建设公司排名
  • 品牌网站设计制作多少钱网站建设有哪些步骤
  • 济南 网站建设私家网站ip地址大全
  • 北京怎样做企业网站天津网站建设 企航互联