当前位置: 首页 > news >正文

用boots做网站成人专业技能培训机构

用boots做网站,成人专业技能培训机构,网站建设用到的算法,用wordpress设计html51.解决的问题 计算机怎么在任意给定的概率分布P上采样?首先可以想到把它拆成两步: (1)首先等概率的从采样区间里取一个待定样本x,并得到它的概率为p(x) (2)然后在均匀分布U[0,1]上取一个值&a…

1.解决的问题

计算机怎么在任意给定的概率分布P上采样?首先可以想到把它拆成两步:

(1)首先等概率的从采样区间里取一个待定样本x,并得到它的概率为p(x)

(2)然后在均匀分布U[0,1]上取一个值,如果这个值高于了样本出现的概率p(x),那么就舍弃掉这个待定样本,如果低于或等于这个值就保留。

不断重复这个步骤,我们就能得到满足概率分布P的样本X。

这个方法看似有效,但存在一个致命的问题,那就是慢,因为概率p的均值,随着采样的区域增大而减小【如果P是多维概率分布,那么随着维度不断增大,那么这个值将趋近于0,也就是维度灾难】,那么就意味着这个样本被保留下来的概率非常小。

那么怎么改进?

我们把上述的第(2)步改一下,不再用均匀U[0,1]进行采样,而是用U[0,max(p)],而选取的规则变为,如果从均匀分布U[0,max(p)]里取得的值u高于p(x),那么就保留该样本。

这样能够保证,至少有一个可能出现的样本在概率区间接受率为1。

这种改进比第一种的命中率要高上不少,如果p是均匀分布,那么采样命中率将是100%,当然如果采样是均匀分布,那么我直接取就好了,没必要多这么一步。

那么在此之上还有什么改进呢?

你自然能想到,我们不再用均匀分布U来计算样本是否可以保留,我们找一个好实现的概率分布Q,这个Q要和分布P相似,我们放缩该概率密度函数,使得min(q)>max(p)。

这样一来,命中率就又提高了,而且可以预想到,如果概率分布q=p那么采样命中率就会是100%,但这自然不可能。

那么有没有一种方法可以让采样的命中率是100%呢?

有,就是MCMC,在MCMC中,所有样本都是有效采样。而原理则是用频率取代概率。

2.MCMC

假设我们手里有个小球,每隔一秒就会变一种颜色(包括当前颜色),一段时间后,我们统计每种颜色的时间,就可以得到,各颜色出现的概率。

而这就是MCMC的原理,我们要做的是借助马尔可夫链,实现这样一个小球。

我们给小球输入一个指令,给定它每种颜色出现的概率,也就是P。

这时候小球内部有个状态机会来实现这个概率,首先会按照颜色的数量建立状态,同时每种状态之间会有线路连接,且每种状态之间都是相互可达的,即连通。

这时候有钢珠在每种状态里游走,钢珠到了哪种状态,哪种状态代表的灯就会亮起。

好了,如何让小球的灯能够以某种稳定的频率让灯亮起。

研究发现,只要让两两状态之间转换的概率与对方状态的概率乘积相等。

即P(A)Q(A->B)=P(B)Q(B->A),这就是马尔科夫链细致平衡条件,A和B代表任意两个状态。Q(A-B)是状态A到状态B的转移概率。

这时候,我们只要跟随钢珠在各状态之间的游走,记录下状态值即样本值,就能完成采样。

具体步骤如下,

(1)记录钢珠初始值状态X1。

(2)随机选择一个目标状态。

(3)查看抵达目标状态的转移概率。

(4)从U[0,1]中采一个值,如果值大于转移概率,那么状态不变,如果小于或等于转移概率,那么状态转化为目标状态。

重复如上步骤,就能得到一个服从P分布的样本了。

但这个算法虽然没有无效采样,但状态A转移到状态\bar{A}的转移概率过低,那么就会长时间卡在这一种状态。那么有没有方法改进呢。

当然有,那就是等比例缩放平衡方程两边的转移概率,P(A)Q(A->B)=P(B)Q(B->A)。

这里有个限制,那就是不能破坏转移概率小于或等于1概率特性,同时也不能破坏平衡方程本身。

那么我们能找到的一个缩放系数就是MAX[P(B->A),P(A->B)],两边同时除以该系数。

则有P(A)MIN[1,Q(A->B)/Q(B->A)] = P(B)MIN[1,Q(A->B)/Q(B->A)]

这样就能保证至少有一边可以必定转化为另一边。

到这里MCMC就算比较完整了。

问题就是Q怎么选。

这里有两种方案,一个就是Q任取,只要满足转移矩阵的要求,然后补一个系数配平方程

即: P(A)Q(A->B)*[P(B)Q(B->A)]=P(B)Q(B->A)*[P(A)Q(A->B)],

缩放后有:

P(A)Q(B->A)*MIN[1,P(B)Q(B->A)/P(B)Q(B->A)] = P(B)Q(B->A)*MIN[1,P(A)Q(A->B)/P(B)Q(B->A)]

另一种那就是选Q(A->B) = P(B),Q(B->A)=P(A)。

前者是HM的思想,配平的系数的使用方法类比前一节的转移接受率。

后者是Gibbs的思想。

具体实现有很多细节,可以看下面推荐的教学视频,这里推荐先看P6

 机器学习-白板推导系列-蒙特卡洛方法5(Monte Carlo Method)- 再回首_哔哩哔哩_bilibili

http://www.15wanjia.com/news/18277.html

相关文章:

  • 亚马逊品牌网站要怎么做百度软件中心
  • 网站建设会遇到哪些难题it培训班学出来有用吗
  • 猪八戒网站做推广怎么样seo专员工作内容
  • 网站设计开发建设公司百度指数指的是什么
  • 用凡科帮别人做网站兰州网络优化seo
  • 个人做医疗类网站违法?快速网站排名优化
  • 苏州网站建设建站网18种最有效推广的方式
  • 保定建网站公司百度搜索竞价推广
  • 深圳个人网站设计营销思路八大要点
  • 长春网站建设找新生科技网站制作定制
  • 自己搭服务器 做购物网站成本安卓手机优化软件排名
  • 网站维护的具体问题网站服务公司
  • 烟台网站推广效果好临沂seo整站优化厂家
  • 旅游做攻略的网站有哪些百度爱采购推广效果怎么样?
  • 亚洲b2b网站百度文库账号登录入口
  • 网站建设实验后体会网站制作大概多少钱
  • 广州海珠网站开发方案域名备案查询
  • 福州网站开发系列购买域名后如何建立网站
  • 绵阳网站推广优化佛山seo网站排名
  • wordpress缩略图清除seo一个月工资一般多少
  • 公司网站域名管理安徽百度推广怎么做
  • 哪些网站上可以做seo推广的自媒体平台app
  • 特色的佛山网站建设磁力天堂最新版地址
  • 丁香园做科室网站高州网站seo
  • 在日本网站做推广渠道北京seo优化分析
  • 注册中文域名费用一般多少钱成都网站优化公司
  • 完善网站建设的目的是西安网站优化培训
  • 设计网站需要用到哪些技术网上销售
  • 做国外有那些网站比较好达州seo
  • 做淘宝客需要建网站吗百度指数网址