当前位置: 首页 > news >正文

亚马逊查关键词搜索量的工具专业网站优化推广

亚马逊查关键词搜索量的工具,专业网站优化推广,网站上的站点地图链接是这么做的,棋牌源码交易商城一、安装docker 1、安装dokcer sudo apt install docker.io2、docker 添加到用户组 创建docker用户组 sudo groupadd docker添加当前用户加入docker用户组 sudo usermod -aG docker ${USER}重启docker服务 sudo systemctl restart docker切换或者退出当前账户再从新登入 …

一、安装docker

1、安装dokcer

sudo apt install docker.io

2、docker 添加到用户组

  • 创建docker用户组
sudo groupadd docker
  • 添加当前用户加入docker用户组
sudo usermod -aG docker ${USER}
  • 重启docker服务
sudo systemctl restart docker
  • 切换或者退出当前账户再从新登入
docker ps

如果当前用户执行无报错, 则表示用户已经加到docker组

3、docker 配置阿里云镜像

vim /etc/docker/daemon.json

daemon.json

{"registry-mirrors": ["https://zfzbet67.mirror.aliyuncs.com"]
}

4、docker 配置汉化工具

  • 拉取镜像:已经有大神准备好了汉化版的镜像,无需自己进行繁杂的汉化操作。
docker pull summary/portainer-ce
  • 已有镜像,加载本地镜像
    在这里插入图片描述
dokcer load -i images.tar
  • 启动镜像
docker run -d -p 1066:9000 -v /var/run/docker.sock:/var/run/docker.sock --restart=always --name=portainer-ce summary/portainer-ce
  • 登录docker管理界
http://localhost:1066/
  • 第一次登陆需要注册
用户名:admin密码:123465

5、相关资料

  • 🐕docker网络基础知识:https://www.whbblog.cn/446.html
  • 🍰Docker镜像发布:https://www.whbblog.cn/440.html
  • 🐫Docker容器数据卷:https://www.whbblog.cn/441.html
  • 💃DockerFile构建镜像:https://www.whbblog.cn/444.html
  • 🕊Docker Compose 容器编排:https://www.whbblog.cn/447.html

二、NVIDIA CONTAINER TOOLKIT 安装

是一个用于在 NVIDIA GPU 上运行容器应用程序的工具包。它提供了一系列的组件和工具,用于管理和优化 GPU 加速的容器化工作负载。

NVIDIA Docker 运行时(nvidia-docker2):它是一个 Docker 运行时插件,允许容器与宿主机共享 NVIDIA GPU 资源。这使得开发人员可以在容器中轻松地访问和使用 GPU 加速功能,无需进行复杂的配置。

1、设置NVIDIA容器工具包

  • 安装curl
sudo apt-get install curl
  • 设置程序包存储库和GPG密钥:
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

2、安装nvidia-container-toolkit 程序包(和依赖项):

  • 更新程序列表
sudo apt-get update
  • 安装
sudo apt-get install -y nvidia-container-toolkit
  • 配置Docker守护程序以识别 NVIDIA Container Runtime:
sudo nvidia-ctk runtime configure --runtime=docker

daemon.json

{"registry-mirrors": ["https://zfzbet67.mirror.aliyuncs.com"],"runtimes": {"nvidia": {"path": "/usr/bin/nvidia-container-runtime","runtimeArgs": []}}
}
  • 重启docker
sudo systemctl restart docker
  • 测试
sudo docker run --rm --runtime=nvidia --gpus all nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smi

输出一下信息,安装成功。

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.06    Driver Version: 450.51.06    CUDA Version: 11.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            On   | 00000000:00:1E.0 Off |                    0 |
| N/A   34C    P8     9W /  70W |      0MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

三、安装cuda

  • 执行命令,根据提示按回车即可
sudo chmosd -X cuda_11.2.0_460.27.04_linux.run
suod bash cuda_11.2.0_460.27.04_linux.run
  • 添加到环境变量
sudo vim ~/.baschrc# 	结尾添加
export PATH=/usr/bin:/usr/sbin:/usr/local/cuda-11.2/bin
export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64
  • 验证
nvcc -V # 输出以下信息安装成功
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:08:53_PST_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0

四、cudnn 安装

  • 解压cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz
tar -xvf cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZG12LLfN-1691460393859)(H:\360MoveData\Users\Administrator\Desktop\显卡环境安装包\ubuntu显卡环境安装.assets\image-20230808094350495.png)]

  • includelib分别复制到cuda 安装目录 下的 includelib
sudo cp -r include/* /usr/local/cuda-11.2/include
sudo cp -r lib/* /usr/local/cuda-11.2/lib64

五、TensorRT 安装

  • 解压压缩包,复制到opt目录即可
tar -xvf tensorrt-8.2.5.1.linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz
sudo mv TensorRT-8.2.5.1/ /opt
  • 添加到环境变量,可选
sudo vim ~/.baschrc# 	结尾添加
export PATH=/usr/bin:/usr/sbin:/usr/local/cuda-11.2/bin:/opt/TensorRT-8.2.5.1/bin
export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:/opt/TensorRT-8.2.5.1/lib# 更新资源
source ~/.baschrc
http://www.15wanjia.com/news/182130.html

相关文章:

  • 如何取一个大气的名字的做网站推广渠道分析
  • 展示型网站建设的标准网站设计费报价表
  • 建设自己的淘宝优惠券网站工业和信息化部证书含金量
  • 响应式网站源码.net秦皇岛市建设局
  • 验证码网站搭建微信投票网站制作
  • 如何建网站并做推广seo的内容有哪些
  • 淘客网站 源码北京做兼职从哪个网站好
  • 上海知名网站建设公司排名wordpress返回顶部插件
  • 系统官网网站模板wordpress跨境平台
  • 利用网盘 建网站东莞建设网站公司简介
  • 河南营销型网站建设企业网站设计说明
  • 龙岗同乐社区网站建设成都网站建设创新互联
  • 网站建设专业名词解释网站太原网页设计公司是销售吗
  • 中山精品网站建设讯息天津建设工程信息网询
  • 龙华网站建设设计制作公司wordpress qq登录
  • iis5.1新建网站关于网络推广的方法
  • 郑州经济技术开发区招教广州seo代理
  • 兼职20网站开发有创意的广告图片及赏析
  • 自己做网站能赚钱么做预算的网站
  • 北京网站建设是什么四川建设质量安全网站
  • 建设银行官网站预约oppo应用市场
  • 建设工程质量+协会网站vx小程序制作
  • 网站可以做固定资产吗视频弹幕网站怎么做的
  • 开贴纸网站要怎么做ip地址直接访问网站
  • 网站策划流程静态网站开发用到的技术
  • 网站开发公司市场久久建筑网会员怎么样
  • 哪个网站买做房图纸好互动网页设计是什么
  • 全国好的深圳网站设计海络网站
  • 金色金融公司网站源码专做女裤有哪些网站
  • 厦门做网站公司排名重庆seo网站建设优化