当前位置: 首页 > news >正文

网站建设的售后服务怎么做好网站方式推广

网站建设的售后服务,怎么做好网站方式推广,做网站网页尺寸是多少,在那些免费网站做宣传效果好序言 yolov8发布这么久了,一直没有机会尝试一下,今天用之前自己制作的筷子点数数据集进行训练,并且记录一下使用过程以及一些常见的操作方式,供以后翻阅。 一、环境准备 yolov8的训练相对于之前的yolov5简单了很多,…

序言

yolov8发布这么久了,一直没有机会尝试一下,今天用之前自己制作的筷子点数数据集进行训练,并且记录一下使用过程以及一些常见的操作方式,供以后翻阅。

一、环境准备

yolov8的训练相对于之前的yolov5简单了很多,也比其他框架上手要来得快,因为很多东西都封装好了,直接调用或者命令行运行就行,首先需要先把代码git到本地:

git clone https://github.com/ultralytics/ultralytics.git

然后安装ultralytics库,核心代码都封装在这个库里了。

pip install ultralytics

再然后需要安装requirements.txt文件里需要安装的库,python版本要求python>=3.7,torch版本要求pytorch>=1.7.0

pip install -r requirements.txt

接下来我们可以把coco权重下载下来,使用命令行运行检测命令检查环境是否安装成功,将权重下载下来然后新建weights文件夹存放:
在这里插入图片描述
运行检测命令:

yolo predict model=./weights/yolov8n.pt source=./ultralytics/assets/bus.jpg save

其中的一些命令,后面再仔细描述,大部分情况下,这个命令行都是可以运行的,运行结束后,图片保存在runs/detect/predict/bus.jpg中,如下:
在这里插入图片描述
至此,你的环境就准备好了,接下来就可以训练了。

二、数据准备

数据我使用的是之前自己制作的筷子点数数据集,图片如下:
在这里插入图片描述
标注示例:
在这里插入图片描述

通常我们采用VOC格式的标注数据,所以新建一个任意位置的文件夹(记住该文件夹的绝对路径),文件夹中包含如下内容:
在这里插入图片描述

  • Annotations xml标注文件
  • images 训练的图片
  • ImageSets 用于存放划分的train.txt、test.txt、val.txt文件(初始为空)
  • labels 用于存放yolo格式的标注txt文件(初始为空)

接下来运行如下文件,路径或者类别等参数根据自己的需要修改,运行该文件有两个作用:

  1. 划分train、test、val数据集
  2. 将voc格式标注转换为yolo格式标注
import os
import random
import xml.etree.ElementTree as ET
from os import getcwdsets = ['train', 'test', 'val']                        # 划分的train、test、val  txt文件名字classes = ['label']                                    # 数据集类别data_root = "/home/cai/data/chopsticks"                # 数据集绝对路径trainval_percent = 0.1                                 # 测试集验证集比例
train_percent = 0.9                                    # 训练集比例
xmlfilepath = '{}/Annotations'.format(data_root)
txtsavepath = '{}/images'.format(data_root)
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftest = open('{}/ImageSets/test.txt'.format(data_root), 'w')
ftrain = open('{}/ImageSets/train.txt'.format(data_root), 'w')
fval = open('{}/ImageSets/val.txt'.format(data_root), 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:if i in train:ftest.write(name)else:fval.write(name)else:ftrain.write(name)ftrain.close()
fval.close()
ftest.close()# --------------------------------  voc 转yolo代码def convert(size, box):dw = 1. / size[0]dh = 1. / size[1]x = (box[0] + box[1]) / 2.0y = (box[2] + box[3]) / 2.0w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)def convert_annotation(image_id):in_file = open('{}/Annotations/{}.xml'.format(data_root,image_id),encoding='UTF-8')# print(in_file)out_file = open('{}/labels/{}.txt'.format(data_root,image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
print(wd)
for image_set in sets:if not os.path.exists('{}/labels/'.format(data_root)):os.makedirs('{}/labels/'.format(data_root))image_ids = open('{}/ImageSets/{}.txt'.format(data_root,image_set)).read().strip().split()list_file = open('{}/{}.txt'.format(data_root,image_set), 'w')for image_id in image_ids:# print(image_id)list_file.write('{}/images/{}.jpg\n'.format(data_root,image_id))try:convert_annotation(image_id)except:print(image_id)list_file.close()

最后得到如下文件,labels和ImageSets都不再为空:
在这里插入图片描述

二、开始训练

v8的训练很简单,配置也超级简单,首先第一步在ultralytics/datasets中创建我们数据集的配置文件,这里我创建了一下chopsticks.yaml,内容如下,其实和之前的v5配置文件一样,该文件中修改自己的路径和类别即可:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: python train.py --data coco.yaml
# parent
# ├── yolov5
# └── data
#     └── chopsticks  ← downloads here# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: /home/cai/data/chopsticks     # dataset root dir
train: train.txt  # train ImageSets (relative to 'path') 118287 ImageSets
val: val.txt  # val ImageSets (relative to 'path') 5000 ImageSets
test: test.txt  # 20288 of 40670 ImageSets, submit to https://competitions.codalab.org/competitions/20794# Classes
nc: 1  # number of classes
names: ['label']  # class names

然后就可以开始训练了,训练过v5的同学可能记得还要修改一下models里的yaml文件,但是V8完全不用的,V8提供了两种简单的训练方式,一是命令行运行,直接在终端运行命令:

yolo task=detect mode=train model=./weights/yolov8n.pt data=./ultralytics/datasets/chopsticks.yaml epochs=100 batch=16 device=0
  • task 代表任务类型
  • mode 代表训练
  • model 可以是yaml文件(权重会初始化),也可以是pt文件(初始化时加载预训练模型)
  • data 你创建的数据集yaml文件
  • epochs 训练轮次
  • batch 训练批次
  • device 使用0序号GPU训练

二是python文件运行,创建一个trian.py文件,运行python trian.py:

from ultralytics import YOLO# 加载模型
# model = YOLO("yolov8n.yaml")  # 从头开始构建新模型
model = YOLO("./weights/yolov8n.pt")  # 加载预训练模型(推荐用于训练)# Use the model
results = model.train(data="./ultralytics/datasets/chopsticks.yaml", epochs=100, batch=16,device=0)             # 训练模型

train过程比较顺利,训练默认采用早停法,即50个轮次评估中如果模型没有明显的精度提升的话,模型训练会直接停止,可以通过修改patience=50参数控制早停的观察轮次。
在这里插入图片描述

训练结束后模型和训练过程保存在runs文件夹中,可以看到精度其实还是不错的,接下来用图片测试一下。

同样的提供两种简单的推理方式,一是命令行,运行:

yolo task=detect mode=predict model=./runs/detect/train/weights/best.pt source=./40.jpg save=True

或者创建一个demo.py文件,运行python demo.py:

from ultralytics import YOLO# Load a model
# model = YOLO("yolov8n.yaml")  # build a new model from scratch
model = YOLO("./runs/detect/train/weights/best.pt")  # load a pretrained model (recommended for training)# Use the model
results = model("./40.jpg ")  # predict on an image

在这里插入图片描述
可以看到效果还是很不错的。

三、导出onnx

模型训练完后,需要部署,V8也提供了直接了如下格式模型的导出(居然也支持paddlepaddle,惊讶),导出后可以摆脱训练框架进行部署:
在这里插入图片描述
命令行导出命令如下:

yolo export model=./runs/detect/train/weights/best.pt format=onnx       # export custom trained model

python文件导出:

from ultralytics import YOLO# Load a model
model = YOLO('./runs/detect/train/weights/best.pt')  # load a custom trained# Export the model
model.export(format='onnx')

在这里插入图片描述
onnx文件保存在pt文件同级目录下,超级简单丝滑有木有!!


相关数据集和代码提供百度云,需要的朋友可自行下载。

链接:https://pan.baidu.com/s/1k-f61kiOiMA8yf-tqgV4GA?pwd=28hw
提取码:28hw

http://www.15wanjia.com/news/17907.html

相关文章:

  • 互联网seo是什么安卓优化大师老版本
  • 网件路由器登录密码武汉seo群
  • 成都十大装修品牌装修公司上海seo关键词优化
  • wordpress建站要钱么营销网站建设创意
  • 佛山网站建设公司大全企业管理咨询
  • 物业管理系统的设计与实现站长工具seo综合查询收费吗
  • 武汉企业网站建设公司网站设计报价
  • 广告投放平台主要有哪些太原优化排名推广
  • 网站的容量google关键词搜索工具
  • 金阊网站建设seo外链论坛
  • 做网站运营的股票产品设计
  • 传奇私服网站做ssl整合营销策划
  • .net开发的大型网站seo标题优化
  • 素材匹配网站搭建一个网站平台需要多少钱
  • 企业网站优化兴田德润中国女排联赛排名
  • 叫别人做网站后怎么更改密码北京百度seo服务
  • 金牌邮箱网站百度注册公司地址
  • 门户类网站开发多少钱如何把自己的网站推广出去
  • 不用代码做网站 知乎网站优化企业排名
  • 有什么网上做c 的网站网站建设工作总结
  • wordpress目录 读写权限网站seo优化外包
  • 网站策划的步骤东莞整站优化推广公司找火速
  • 淄博高端网站设计seo公司广州
  • 电子商务网站建设与维护致谢词营销软文范例大全300字
  • 合肥网络公司网站建设seo是指搜索引擎优化
  • 群晖网站建设处理错误500江北关键词优化排名seo
  • 成都 专业 网站建设seo优化关键词排名
  • 推荐几个成人网站产品推广方案ppt
  • 复兴区建设局网站网站seo诊断工具
  • 北京建设银行网站田村网址搜索ip地址