当前位置: 首页 > news >正文

提高网站关键词排名百度网站排名优化工具

提高网站关键词排名,百度网站排名优化工具,网站推广一般在哪个网做,中国建筑网官网查证前一篇文章,学习率调整策略 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started CNN 卷积神经网络 CNN什么是卷积工作原理深度学习的卷积运算提取特征不同特征核的效果比较卷积核感受野共享权重池化 示例源码 …

前一篇文章,学习率调整策略 | PyTorch 深度学习实战

本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started

CNN 卷积神经网络

  • CNN
    • 什么是卷积
    • 工作原理
      • 深度学习的卷积运算
      • 提取特征
      • 不同特征核的效果比较
      • 卷积核
      • 感受野
      • 共享权重
      • 池化
    • 示例源码
  • Links

CNN

什么是卷积

【通信原理 入坑之路】——深入、详细地理解通信里面“卷积”概念

卷积,首先是一种数学运算。两个多项式通过滑动,求解多项式参数。

在这里插入图片描述
深度学习的卷积概念,就是借鉴了通信领域使用了卷积。跨学科运用知识,一直是大牛们的惯用手段。掌握人类已经精通的领域的经验,然后推广到前沿领域。

工作原理

利用卷积操作实现平移、扭曲情况下,依然能识别特征

图片是一个二维数据,如果只是利用全连接网络,那么数据的二维特征就丢失了,原始的物理信息丢失了。比如,同一个人出现在不同的照片中,很可能是在不同的位置,作为同样的一张人脸,当其出现在图片中的不同位置1,都可以正确的识别和分类呢?

深度学习的卷积运算

深度学习领域的卷积,参考文章。

卷积核是一个小矩阵,在输入矩阵上,滑动。
在这里插入图片描述

最终得到一个新的 output 矩阵。
在这里插入图片描述

提取特征

因为这种运算,Output 实际上代表了卷积核 Kernel 作用于 Input 后过滤出来的特征。每一个卷积核,就是一个过滤器,从源图片中,提取特定的形状。为了理解这一点,看下面这张图。

在这里插入图片描述

以黑白两个颜色,实现卷积运算,最终输入图片里和特征核(Single filter)重叠的部分得到了加强,和特征核不一致的部分得到了抑制。

不同特征核的效果比较

当特征核变大,增加多个特征提取器,那么就可以识别一张图片上的特征组,从而判定图片中包含的物体的分类。

  • 左侧是运算符,中间是对应的特征核,右侧是输出的图片

在这里插入图片描述
在这里插入图片描述
当然,计算机不是【看图】,而是通过卷积后的矩阵,从数字上去检查分类。当输出的矩阵组成一个全连接,使用目标的标注数据,计算出损失,就可以学习分类的权重,实现分类的效果。

卷积核

卷积核,也称为特征提取器,后者的名字更加的形象,特征提取器类似于通信领域的滤波器。

感受野

感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map)上的像素点在输入图片上映射的区域大小。参考文章

在这里插入图片描述

共享权重

使用同一个特征核过滤图片,也就是一个特征核对于一个图片上的多个感受野,特征核的矩阵不变。

使用梯度下降原理更新参数时,参数包括了每个卷积核,虽然一个卷积核是滑动在多个感受野得到输出矩阵的,但是特征核更新时,不会针对单独的某个感受野。

对于一个卷积神经网络,都包括哪些参数,参考文章。

池化

经过多个卷积核以后,维度更多,虽然因为保留了重要的特征信息,但是会远远的大于分类信息,在加入最后的全连接层之前,还需要浓缩一下信息,类似于结晶。

这个操作就是池化,比如常用的最大池化,方法如下:

在这里插入图片描述

示例源码

下面以一段 PyTorch 代码为例,使用卷积神经网络完成图片分类任务。

'''
CNN Model
'''
import torch
import torchvision.datasets as ds
import torchvision.transforms as ts
from torch.utils.data import DataLoader
from torch.autograd import Variable
import randomtorch.manual_seed(777)# reproducibility# parameters
batch_size=100
learning_rate=0.001
epochs=2# MNIST dataset
ds_train=ds.MNIST(root='../../../DATA/MNIST_data',train=True,transform=ts.ToTensor(),download=True)
ds_test=ds.MNIST(root='../../../DATA/MNIST_data',train=False,transform=ts.ToTensor(),download=True)
# dataset loader
dl=DataLoader(dataset=ds_train,batch_size=batch_size,shuffle=True)# CNN Model (2 conv layers)
class CNN(torch.nn.Module):def __init__(self):super(CNN,self).__init__()# L1 ImgIn shape=(?, 28, 28, 1)#    Conv     -> (?, 28, 28, 32)#    Pool     -> (?, 14, 14, 32)self.layer1=torch.nn.Sequential(torch.nn.Conv2d(1,32,kernel_size=3,stride=1,padding=1),#padding=1进行0填充torch.nn.ReLU(),torch.nn.MaxPool2d(kernel_size=2,stride=2))# L2 ImgIn shape=(?, 14, 14, 32)#    Conv      ->(?, 14, 14, 64)#    Pool      ->(?, 7, 7, 64)self.layer2=torch.nn.Sequential(torch.nn.Conv2d(32,64,kernel_size=3,stride=1,padding=1),torch.nn.ReLU(),torch.nn.MaxPool2d(kernel_size=2,stride=2))# Final FC 7x7x64 inputs -> 10 outputsself.fc=torch.nn.Linear(7*7*64,10)torch.nn.init.xavier_uniform(self.fc.weight)def forward(self,x):out=self.layer1(x)out=self.layer2(out)out=out.view(out.size(0),-1)# Flatten them for FCout=self.fc(out)return out# instantiate CNN model
model=CNN()# define cost/loss & optimizer
criterion=torch.nn.CrossEntropyLoss()# Softmax is internally computed.
optimizer=torch.optim.Adam(model.parameters(),lr=learning_rate)# train my model
print('Learning started. It takes sometime.')
for epoch in range(epochs):avg_cost=0total_batch=len(ds_train)//batch_sizefor step,(batch_xs,batch_ys) in enumerate(dl):x=Variable(batch_xs)#[100, 1, 28, 28] image is already size of (28x28), no reshapey=Variable(batch_ys)#[100] label is not one-hot encodedoptimizer.zero_grad()h=model(x)cost=criterion(h,y)cost.backward()optimizer.step()avg_cost+=cost/total_batchprint(epoch+1,avg_cost.item())
print('Learning Finished!')# Test model and check accuracy
model.eval()#!!将模型设置为评估/测试模式 set the model to evaluation mode (dropout=False)# x_test=ds_test.test_data.view(len(ds_test),1,28,28).float()
x_test=ds_test.test_data.view(-1,1,28,28).float()
y_test=ds_test.test_labelspre=model(x_test)print("pre.data=")
print(pre.data)
print("*"*3)pre=torch.max(pre.data,1)[1].float()
acc=(pre==y_test.data.float()).float().mean()
print("acc", acc)r=random.randint(0,len(x_test)-1)
x_r=x_test[r:r+1]
y_r=y_test[r:r+1]
pre_r=model(x_r)# IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)
# https://discuss.pytorch.org/t/indexerror-dimension-out-of-range-expected-to-be-in-range-of-1-0-but-got-1/54267/12
print("pre_r.data=")
print(pre_r.data)
print("*"*3)pre_r=torch.max(pre_r.data,-1)[1].float()
print('pre_r')
print(pre_r)acc_r=(pre_r==y_r.data).float().mean()
print(acc_r)

Links

  • 卷积神经网络中感受野的详细介绍
  • 感受野详解
  • 【通信原理 入坑之路】——深入、详细地理解通信里面“卷积”概念
  • How to calculate the number of parameters in CNN?
  • 【深度学习】人人都能看得懂的卷积神经网络——入门篇

  1. 图片相关任务,包括图片分类、物体检测、实例分割、目标跟踪等。这些任务有不同的功能,但是都依赖于图片中包含的特征,这些特征都是可能平移、变幻、扭曲的。 ↩︎

http://www.15wanjia.com/news/175698.html

相关文章:

  • 做网站多少钱西宁君博美评网站建站模式
  • 什么是网站开发与建设制作网站的视频教程
  • 织梦模板大气网站建设类网站模板下载新余网站建设公司
  • 王串场街网站建设公司怎么建设一个电影网站
  • 网站开发 为什么要用缩略图无锡网站建设首选捷搜
  • 常州做的网站的公司哪家好新手做网站免费教程
  • 深圳市手机网站建设企业海报设计说明万能模板
  • No家电网站建设泉州城乡住房建设厅网站
  • 网站开发的技术风险如何建立游戏网站平台
  • 福州网站制作工具网站设计高端
  • wordpress 新闻类网站专门做运动鞋的网站
  • 玉林住房和建设厅网站金湖县网站建设
  • 招远网站建设联系电话网站架构设计英文翻译
  • 网站开发应聘信息wordpress 多用户模式
  • 网站开发及运营成本装修网站官网
  • 做业务员找数据的网站wordpress主题转换
  • 网站标签优化哪个公司做外贸网站好
  • 建设网站虚拟主机网页新建站点
  • 网站架构图一般包括什么在线设计平台崭露头角
  • 济阳建设局网站天津优化网络公司的建议
  • 网站开发部门的规章制度手机网站 等比缩放
  • 延吉哪家网站建设公司好海口企业网站建设制作哪家专业
  • 旅游网站设计说明wordpress 一键转载
  • 做早餐的网站wordpress 安装 模板
  • 东莞网站优化找哪家成都网站建设互联
  • 厦门优秀的网站设计用地方名字做网站
  • ps做网站的分辨率多少钱网站运营做网页设计
  • 四川建设工程网站公众号绑定网站教程
  • 想要找个网站做环评公示建设电影网站的目的
  • 上海青浦网站建设公司做和别人一样的网站