当前位置: 首页 > news >正文

淮安建立公司网站流程中建材建设有限公司网站

淮安建立公司网站流程,中建材建设有限公司网站,建站宝盒源代码,教育加盟网站建设目录 1. 说明2. IKUN模型2.1 导入相关库2.2 建立模型2.3 模型编译2.4 数据生成器2.5 模型训练2.6 模型保存2.7 模型训练结果的可视化 3. IKUN的CNN模型可视化结果图4. 完整代码 1. 说明 本篇文章是CNN的另外一个例子,IKUN模型,是自制数据集的例子。之前…

目录

  • 1. 说明
  • 2. IKUN模型
    • 2.1 导入相关库
    • 2.2 建立模型
    • 2.3 模型编译
    • 2.4 数据生成器
    • 2.5 模型训练
    • 2.6 模型保存
    • 2.7 模型训练结果的可视化
  • 3. IKUN的CNN模型可视化结果图
  • 4. 完整代码

1. 说明

本篇文章是CNN的另外一个例子,IKUN模型,是自制数据集的例子。之前的例子都是python中库自带的,但是这次的例子是自己搜集数据集,如下图所示整理。
在这里插入图片描述
在这里插入图片描述

在这里简单介绍如何自制数据集,本人采用爬虫下载图片,如下,只需要输入需要下载图片的名字,然后代码执行之后就会自动爬取图片。当然在使用爬虫的时候需要下载好相关的库。

"""
objective:爬取任意偶像/单词的百度图片
coding: UTF-8
"""
# 导入相关库
import re
import requests
import osdef download(html, search_word, j):pic_url = re.findall('"objURL":"(.*?)",.*?"fromURL"', html, re.S)  # 利用正则表达式找每一个图片的网址# print(pic_url)n = j * 60for k in pic_url:print('正在下载第' + str(n + 1) + '张图片,图片地址:' + str(k))try:pic = requests.get(k, timeout=20)except requests.exceptions.ConnectionError:print('当前图片无法下载')continuedir_path = r'D:\偶像图片\偶像' + search_word + '_' + str(n + 1) + '.jpg'if not os.path.exists('D:\偶像图片'):os.makedirs('D:\偶像图片')fp = open(dir_path, 'wb')fp.write(pic.content)fp.close()n += 1if __name__ == '__main__':name = input("输入你想要获取偶像的名称: ")headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.125 Safari/537.36'}page = 2  # 可以自定义,想获取几页就是几页,一页有60张图片,但是有的可能就很少,自己注意下for i in range(page):url = 'https://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word=' + name + '&pn=' + str(i * 20)  # 网址result = requests.get(url, headers=headers)  # 请求网址# print(result.content)  # 如果运行失败,一步一步找到原因,可以先看下网页输出的内容download(result.content.decode('utf-8'), name, i)  # 保存图片
print("偶像图片下载完成")

2. IKUN模型

2.1 导入相关库

以下第三方库是python专门用于深度学习的库。需要提前下载并安装

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPool2D
from keras.optimizers import RMSprop, Adam
from keras.preprocessing.image import ImageDataGenerator
import sys, os  # 目录结构
import matplotlib.pyplot as plt
from keras.callbacks import EarlyStopping, ReduceLROnPlateau

2.2 建立模型

这是采用另外一种书写方式建立模型。
构建了三层卷积层,三层池化层,然后是展平层(将二维特征图拉直输入给全连接层),然后是三层全连接层,并且加入了dropout层。

"1.模型建立"
# 1.卷积层,输入图片大小(150, 150, 3), 卷积核个数16,卷积核大小(5, 5), 激活函数'relu'
conv_layer1 = Conv2D(input_shape=(150, 150, 3), filters=16, kernel_size=(5, 5), activation='relu')
# 2.最大池化层,池化层大小(2, 2), 步长为2
max_pool1 = MaxPool2D(pool_size=(2, 2), strides=2)
# 3.卷积层,卷积核个数32,卷积核大小(5, 5), 激活函数'relu'
conv_layer2 = Conv2D(filters=32, kernel_size=(5, 5), activation='relu')
# 4.最大池化层,池化层大小(2, 2), 步长为2
max_pool2 = MaxPool2D(pool_size=(2, 2), strides=2)
# 5.卷积层,卷积核个数64,卷积核大小(5, 5), 激活函数'relu'
conv_layer3 = Conv2D(filters=64, kernel_size=(5, 5), activation='relu')
# 6.最大池化层,池化层大小(2, 2), 步长为2
max_pool3 = MaxPool2D(pool_size=(2, 2), strides=2)
# 7.卷积层,卷积核个数128,卷积核大小(5, 5), 激活函数'relu'
conv_layer4 = Conv2D(filters=128, kernel_size=(5, 5), activation='relu')
# 8.最大池化层,池化层大小(2, 2), 步长为2
max_pool4 = MaxPool2D(pool_size=(2, 2), strides=2)
# 9.展平层
flatten_layer = Flatten()
# 10.Dropout层, Dropout(0.2)
third_dropout = Dropout(0.2)
# 11.全连接层/隐藏层1,240个节点, 激活函数'relu'
hidden_layer1 = Dense(240, activation='relu')
# 12.全连接层/隐藏层2,84个节点, 激活函数'relu'
hidden_layer3 = Dense(84, activation='relu')
# 13.Dropout层, Dropout(0.2)
fif_dropout = Dropout(0.5)
# 14.输出层,输出节点个数1, 激活函数'sigmoid'
output_layer = Dense(1, activation='sigmoid')
model = Sequential([conv_layer1, max_pool1, conv_layer2, max_pool2,conv_layer3, max_pool3, conv_layer4, max_pool4,flatten_layer, third_dropout, hidden_layer1,hidden_layer3, fif_dropout, output_layer])

2.3 模型编译

模型的优化器是Adam,学习率是0.01,
损失函数是binary_crossentropy,二分类交叉熵,
性能指标是正确率accuracy,
另外还加入了回调机制。
回调机制简单理解为训练集的准确率持续上升,而验证集准确率基本不变,此时已经出现过拟合,应该调制学习率,让验证集的准确率也上升。

"2.模型编译"
# 模型编译,2分类:binary_crossentropy
model.compile(optimizer=Adam(lr=0.0001),  # 优化器选择Adam,初始学习率设置为0.0001loss='binary_crossentropy',  # 代价函数选择 binary_crossentropymetrics=['accuracy'])  # 设置指标为准确率
model.summary()  # 模型统计# 回调机制 动态调整学习率
reduce = ReduceLROnPlateau(monitor='val_accuracy',  # 设置监测的值为val_accuracypatience=2,  # 设置耐心容忍次数为2verbose=1,  #factor=0.5,  # 缩放学习率的值为0.5,学习率将以lr = lr*factor的形式被减少min_lr=0.000001  # 学习率最小值0.000001)   # 监控val_accuracy增加趋势

2.4 数据生成器

加载自制数据集
利用数据生成器对数据进行数据加强,即每次训练时输入的图片会是原图片的翻转,平移,旋转,缩放,这样是为了降低过拟合的影响。
然后通过迭代器进行数据加载,目标图像大小统一尺寸1501503,设置每次加载到训练网络的图像数目,设置而分类模型(默认one-hot编码),并且数据打乱。

# 生成器对象1:  归一化
gen = ImageDataGenerator(rescale=1 / 255.0)
# 生成器对象2:  归一化 + 数据加强
gen1 = ImageDataGenerator(rescale=1 / 255.0,rotation_range=5,  # 图片随机旋转的角度5度width_shift_range=0.1,height_shift_range=0.1,  # 水平和竖直方向随机移动0.1shear_range=0.1,  # 剪切变换的程度0.1zoom_range=0.1,  # 随机放大的程度0.1fill_mode='nearest')  # 当需要进行像素填充时选择最近的像素进行填充
# 拼接训练和验证的两个路径
train_path = os.path.join(sys.path[0], 'imgs', 'train')
val_path = os.path.join(sys.path[0], 'imgs', 'val')
print('训练数据路径: ', train_path)
print('验证数据路径: ', val_path)
# 训练和验证的两个迭代器
train_iter = gen1.flow_from_directory(train_path,  # 训练train目录路径target_size=(150, 150),  # 目标图像大小统一尺寸150batch_size=8,  # 设置每次加载到内存的图像大小class_mode='binary',  # 设置分类模型(默认one-hot编码)shuffle=True)  # 是否打乱
val_iter = gen.flow_from_directory(val_path,  # 测试val目录路径target_size=(150, 150),  # 目标图像大小统一尺寸150batch_size=8,  # 设置每次加载到内存的图像大小class_mode='binary',  # 设置分类模型(默认one-hot编码)shuffle=True)  # 是否打乱

2.5 模型训练

模型训练的次数是20,每1次循环进行测试

"3.模型训练"
# 模型的训练, model.fit
result = model.fit(train_iter,  # 设置训练数据的迭代器epochs=20,  # 循环次数12次validation_data=val_iter,  # 验证数据的迭代器callbacks=[reduce],  # 回调机制设置为reduceverbose=1)

2.6 模型保存

以.h5文件格式保存模型

"4.模型保存"
# 保存训练好的模型
model.save('my_ikun.h5')

2.7 模型训练结果的可视化

对模型的训练结果进行可视化,可视化的结果用曲线图的形式展现

"5.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = result.history['accuracy']  # 获取模型训练中的accuracy
val_acc = result.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = result.history['loss']  # 获取模型训练中的loss
val_loss = result.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.savefig('my_ikun_acc.png', dpi=600)
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig('my_ikun_loss.png', dpi=600)
plt.show()  # 将结果显示出来

3. IKUN的CNN模型可视化结果图

Epoch 1/20
125/125 [==============================] - 30s 229ms/step - loss: 0.6012 - accuracy: 0.6450 - val_loss: 0.3728 - val_accuracy: 0.8200 - lr: 1.0000e-04
Epoch 2/20
125/125 [==============================] - 28s 223ms/step - loss: 0.3209 - accuracy: 0.8710 - val_loss: 0.3090 - val_accuracy: 0.8900 - lr: 1.0000e-04
Epoch 3/20
125/125 [==============================] - 34s 270ms/step - loss: 0.2564 - accuracy: 0.8990 - val_loss: 0.4873 - val_accuracy: 0.8075 - lr: 1.0000e-04
Epoch 4/20
125/125 [==============================] - ETA: 0s - loss: 0.2546 - accuracy: 0.9050
Epoch 4: ReduceLROnPlateau reducing learning rate to 4.999999873689376e-05.
125/125 [==============================] - 34s 275ms/step - loss: 0.2546 - accuracy: 0.9050 - val_loss: 0.3298 - val_accuracy: 0.8875 - lr: 1.0000e-04
Epoch 5/20
125/125 [==============================] - 31s 246ms/step - loss: 0.1867 - accuracy: 0.9310 - val_loss: 0.3577 - val_accuracy: 0.8500 - lr: 5.0000e-05
Epoch 6/20
125/125 [==============================] - 31s 245ms/step - loss: 0.1805 - accuracy: 0.9260 - val_loss: 0.2816 - val_accuracy: 0.8975 - lr: 5.0000e-05
Epoch 7/20
125/125 [==============================] - 30s 238ms/step - loss: 0.1689 - accuracy: 0.9340 - val_loss: 0.2679 - val_accuracy: 0.9100 - lr: 5.0000e-05
Epoch 8/20
125/125 [==============================] - 30s 237ms/step - loss: 0.2230 - accuracy: 0.9200 - val_loss: 0.2561 - val_accuracy: 0.9075 - lr: 5.0000e-05
Epoch 9/20
125/125 [==============================] - ETA: 0s - loss: 0.1542 - accuracy: 0.9480
Epoch 9: ReduceLROnPlateau reducing learning rate to 2.499999936844688e-05.
125/125 [==============================] - 30s 238ms/step - loss: 0.1542 - accuracy: 0.9480 - val_loss: 0.2527 - val_accuracy: 0.9100 - lr: 5.0000e-05
Epoch 10/20
125/125 [==============================] - 30s 239ms/step - loss: 0.1537 - accuracy: 0.9450 - val_loss: 0.2685 - val_accuracy: 0.9125 - lr: 2.5000e-05
Epoch 11/20
125/125 [==============================] - 33s 263ms/step - loss: 0.1395 - accuracy: 0.9540 - val_loss: 0.2703 - val_accuracy: 0.9100 - lr: 2.5000e-05
Epoch 12/20
125/125 [==============================] - ETA: 0s - loss: 0.1331 - accuracy: 0.9560
Epoch 12: ReduceLROnPlateau reducing learning rate to 1.249999968422344e-05.
125/125 [==============================] - 31s 250ms/step - loss: 0.1331 - accuracy: 0.9560 - val_loss: 0.2739 - val_accuracy: 0.9025 - lr: 2.5000e-05
Epoch 13/20
125/125 [==============================] - 31s 245ms/step - loss: 0.1374 - accuracy: 0.9500 - val_loss: 0.2551 - val_accuracy: 0.9250 - lr: 1.2500e-05
Epoch 14/20
125/125 [==============================] - 32s 254ms/step - loss: 0.1261 - accuracy: 0.9590 - val_loss: 0.2705 - val_accuracy: 0.9050 - lr: 1.2500e-05
Epoch 15/20
125/125 [==============================] - ETA: 0s - loss: 0.1256 - accuracy: 0.9620
Epoch 15: ReduceLROnPlateau reducing learning rate to 6.24999984211172e-06.
125/125 [==============================] - 31s 248ms/step - loss: 0.1256 - accuracy: 0.9620 - val_loss: 0.2449 - val_accuracy: 0.9125 - lr: 1.2500e-05
Epoch 16/20
125/125 [==============================] - 31s 245ms/step - loss: 0.1182 - accuracy: 0.9610 - val_loss: 0.2460 - val_accuracy: 0.9225 - lr: 6.2500e-06
Epoch 17/20
125/125 [==============================] - ETA: 0s - loss: 0.1261 - accuracy: 0.9610
Epoch 17: ReduceLROnPlateau reducing learning rate to 3.12499992105586e-06.
125/125 [==============================] - 30s 243ms/step - loss: 0.1261 - accuracy: 0.9610 - val_loss: 0.2466 - val_accuracy: 0.9250 - lr: 6.2500e-06
Epoch 18/20
125/125 [==============================] - 30s 240ms/step - loss: 0.1098 - accuracy: 0.9630 - val_loss: 0.2544 - val_accuracy: 0.9125 - lr: 3.1250e-06
Epoch 19/20
125/125 [==============================] - ETA: 0s - loss: 0.1165 - accuracy: 0.9630
Epoch 19: ReduceLROnPlateau reducing learning rate to 1.56249996052793e-06.
125/125 [==============================] - 31s 246ms/step - loss: 0.1165 - accuracy: 0.9630 - val_loss: 0.2476 - val_accuracy: 0.9225 - lr: 3.1250e-06
Epoch 20/20
125/125 [==============================] - 35s 281ms/step - loss: 0.1214 - accuracy: 0.9570 - val_loss: 0.2503 - val_accuracy: 0.9225 - lr: 1.5625e-06

在这里插入图片描述
在这里插入图片描述
从以上结果可知,模型的准确率达到了92%,准确率还是很高的。

4. 完整代码

from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPool2D
from keras.optimizers import RMSprop, Adam
from keras.preprocessing.image import ImageDataGenerator
import sys, os  # 目录结构
import matplotlib.pyplot as plt
from keras.callbacks import EarlyStopping, ReduceLROnPlateau"1.模型建立"
# 1.卷积层,输入图片大小(150, 150, 3), 卷积核个数16,卷积核大小(5, 5), 激活函数'relu'
conv_layer1 = Conv2D(input_shape=(150, 150, 3), filters=16, kernel_size=(5, 5), activation='relu')
# 2.最大池化层,池化层大小(2, 2), 步长为2
max_pool1 = MaxPool2D(pool_size=(2, 2), strides=2)
# 3.卷积层,卷积核个数32,卷积核大小(5, 5), 激活函数'relu'
conv_layer2 = Conv2D(filters=32, kernel_size=(5, 5), activation='relu')
# 4.最大池化层,池化层大小(2, 2), 步长为2
max_pool2 = MaxPool2D(pool_size=(2, 2), strides=2)
# 5.卷积层,卷积核个数64,卷积核大小(5, 5), 激活函数'relu'
conv_layer3 = Conv2D(filters=64, kernel_size=(5, 5), activation='relu')
# 6.最大池化层,池化层大小(2, 2), 步长为2
max_pool3 = MaxPool2D(pool_size=(2, 2), strides=2)
# 7.卷积层,卷积核个数128,卷积核大小(5, 5), 激活函数'relu'
conv_layer4 = Conv2D(filters=128, kernel_size=(5, 5), activation='relu')
# 8.最大池化层,池化层大小(2, 2), 步长为2
max_pool4 = MaxPool2D(pool_size=(2, 2), strides=2)
# 9.展平层
flatten_layer = Flatten()
# 10.Dropout层, Dropout(0.2)
third_dropout = Dropout(0.2)
# 11.全连接层/隐藏层1,240个节点, 激活函数'relu'
hidden_layer1 = Dense(240, activation='relu')
# 12.全连接层/隐藏层2,84个节点, 激活函数'relu'
hidden_layer3 = Dense(84, activation='relu')
# 13.Dropout层, Dropout(0.2)
fif_dropout = Dropout(0.5)
# 14.输出层,输出节点个数1, 激活函数'sigmoid'
output_layer = Dense(1, activation='sigmoid')
model = Sequential([conv_layer1, max_pool1, conv_layer2, max_pool2,conv_layer3, max_pool3, conv_layer4, max_pool4,flatten_layer, third_dropout, hidden_layer1,hidden_layer3, fif_dropout, output_layer])
"2.模型编译"
# 模型编译,2分类:binary_crossentropy
model.compile(optimizer=Adam(lr=0.0001),  # 优化器选择Adam,初始学习率设置为0.0001loss='binary_crossentropy',  # 代价函数选择 binary_crossentropymetrics=['accuracy'])  # 设置指标为准确率
model.summary()  # 模型统计# 回调机制 动态调整学习率
reduce = ReduceLROnPlateau(monitor='val_accuracy',  # 设置监测的值为val_accuracypatience=2,  # 设置耐心容忍次数为2verbose=1,  #factor=0.5,  # 缩放学习率的值为0.5,学习率将以lr = lr*factor的形式被减少min_lr=0.000001  # 学习率最小值0.000001)   # 监控val_accuracy增加趋势# 生成器对象1:  归一化
gen = ImageDataGenerator(rescale=1 / 255.0)
# 生成器对象2:  归一化 + 数据加强
gen1 = ImageDataGenerator(rescale=1 / 255.0,rotation_range=5,  # 图片随机旋转的角度5度width_shift_range=0.1,height_shift_range=0.1,  # 水平和竖直方向随机移动0.1shear_range=0.1,  # 剪切变换的程度0.1zoom_range=0.1,  # 随机放大的程度0.1fill_mode='nearest')  # 当需要进行像素填充时选择最近的像素进行填充
# 拼接训练和验证的两个路径
train_path = os.path.join(sys.path[0], 'imgs', 'train')
val_path = os.path.join(sys.path[0], 'imgs', 'val')
print('训练数据路径: ', train_path)
print('验证数据路径: ', val_path)
# 训练和验证的两个迭代器
train_iter = gen1.flow_from_directory(train_path,  # 训练train目录路径target_size=(150, 150),  # 目标图像大小统一尺寸150batch_size=8,  # 设置每次加载到内存的图像大小class_mode='binary',  # 设置分类模型(默认one-hot编码)shuffle=True)  # 是否打乱
val_iter = gen.flow_from_directory(val_path,  # 测试val目录路径target_size=(150, 150),  # 目标图像大小统一尺寸150batch_size=8,  # 设置每次加载到内存的图像大小class_mode='binary',  # 设置分类模型(默认one-hot编码)shuffle=True)  # 是否打乱
"3.模型训练"
# 模型的训练, model.fit
result = model.fit(train_iter,  # 设置训练数据的迭代器epochs=20,  # 循环次数12次validation_data=val_iter,  # 验证数据的迭代器callbacks=[reduce],  # 回调机制设置为reduceverbose=1)
"4.模型保存"
# 保存训练好的模型
model.save('my_ikun.h5')"5.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = result.history['accuracy']  # 获取模型训练中的accuracy
val_acc = result.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = result.history['loss']  # 获取模型训练中的loss
val_loss = result.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.savefig('my_ikun_acc.png', dpi=600)
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.savefig('my_ikun_loss.png', dpi=600)
plt.show()  # 将结果显示出来
http://www.15wanjia.com/news/175063.html

相关文章:

  • 织梦cms做多语言的网站江苏广泽建设有限公司网站
  • c语言网站公司网站的开发
  • 目前市面上做网站的程序兄弟连php网站开发
  • 谷歌网站流量统计静态网站论文目录
  • 淘宝上 网站建设厦门网站建设咨询
  • 简述网站建设评估的指标有哪些阿里云主机wordpress
  • 下载flash网站对外宣传推广方案
  • 建设银行网站上不去了北京装饰公司排行 2019
  • 网站是哪个公司做的好做网站比特币钱包
  • 温州做网站整站优化建设网站考虑因素
  • 大沥做网站西安网站有哪些手续费
  • 比价网站模板wordpress 评论优化
  • 网站开发榜单规则成都设计平台
  • 杭州品格网站设计宿州网站建设开发公司
  • 免费商城网站源码海淘哪些网站做攻略好
  • 外贸营销网站制作公司淘宝网站建设
  • 汽配公司的网站要怎么做泉州网站设计师招聘
  • it企业网站模板wordpress 媒体库管理
  • 泰安网站建设制作服务wordpress媒体库太大
  • 双柏县住房和城乡建设局网站vs2010网站开发教程
  • 电子商务网站建设报告极速网站建设服务商
  • 响应式环保网站模板下载企业做网站大概多少钱
  • 网站建设遇到哪些问题免费建立自己微网站
  • joomla 企业网站模板大连网站建设详细流程
  • 黑人做爰视频免费网站怀化公司做网站
  • 电子商务网站开发与设计项目管理网站建设基本流程图
  • 网站项目建设管理网络营销中心
  • 网站有中文源码加英文怎么做网站建设作者墙这个模板
  • 如何开发一个软件徐州seo排名公司
  • 建设银行开县支行 网站网络营销策划的流程