当前位置: 首页 > news >正文

上海站有云网络科技有限公司青岛建设银行网站

上海站有云网络科技有限公司,青岛建设银行网站,做电影网站只放链接算侵权吗,wordpress 教育 演示文章目录 一、膨胀操作二、开运算与闭运算三、梯度运算四、礼帽与黑帽操作 一、膨胀操作 膨胀操作也就是根据图片将边缘的一些细节给丰富,处理的程度取决于卷积核的大小还有膨胀次数。也就是腐蚀操作的相反操作(腐蚀操作参考我的上一篇文章 点击跳转&am…

文章目录

    • 一、膨胀操作
    • 二、开运算与闭运算
    • 三、梯度运算
    • 四、礼帽与黑帽操作

一、膨胀操作

膨胀操作也就是根据图片将边缘的一些细节给丰富,处理的程度取决于卷积核的大小还有膨胀次数。也就是腐蚀操作的相反操作(腐蚀操作参考我的上一篇文章 点击跳转)。

拿下面的这张照片来举个例子:

在这里插入图片描述
通过膨胀操作:

# 导入OpenCV库,用于图像处理
import cv2
# 导入matplotlib的pyplot模块,用于图像显示
import matplotlib.pyplot as plt
# 导入numpy库,用于数值计算
import numpy as np# 使用cv2.imread()函数读取位于指定路径的图像文件
img = cv2.imread("E:\\XUEXI\\Python_learn\\tupian\\4.jpg")# 创建一个30x30的矩形结构元素,用于形态学操作
# np.ones((30,30),np.uint8)创建一个所有元素都是1的30x30矩阵
kernel = np.ones((30, 30), np.uint8)# 使用cv2.dilate()函数对图像进行膨胀操作一次
dilate_1 = cv2.dilate(img, kernel, iterations=1)# 使用cv2.dilate()函数对图像进行膨胀操作两次
dilate_2 = cv2.dilate(img, kernel, iterations=2)# 使用cv2.dilate()函数对图像进行膨胀操作三次
dilate_3 = cv2.dilate(img, kernel, iterations=3)# 使用numpy的hstack()函数将三个膨胀后的图像水平堆叠在一起
res = np.hstack((dilate_1, dilate_2, dilate_3))# 显示堆叠后的图像
cv2.imshow("res", res)
# 等待用户按下任意键
cv2.waitKey(0)
# 关闭所有OpenCV创建的窗口
cv2.destroyAllWindows()

膨胀一次:
在这里插入图片描述

膨胀两次:
在这里插入图片描述
膨胀三次:
在这里插入图片描述

二、开运算与闭运算

开运算是先进行腐蚀操作,然后进行膨胀操作,用于去除小的物体

拿以下图片来举例子:

在这里插入图片描述

经过开运算:

# 导入OpenCV库,用于图像处理
import cv2
# 导入matplotlib的pyplot模块,用于图像显示
import matplotlib.pyplot as plt
# 导入numpy库,用于数值计算
import numpy as np# 使用cv2.imread()函数读取位于指定路径的图像文件
img = cv2.imread("E:\\XUEXI\\Python_learn\\tupian\\3.jpg")# 创建一个5x5的矩形结构元素,用于形态学操作
# np.ones((5,5),np.uint8)创建一个所有元素都是1的5x5矩阵
kernel = np.ones((10, 10), np.uint8)# 使用cv2.morphologyEx()函数对图像进行开运算
# 开运算是先进行腐蚀操作,然后进行膨胀操作,用于去除小的物体
# cv2.MORPH_OPEN指定要执行的形态学操作是开运算
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)# 使用cv2.imshow()函数显示开运算后的图像
cv2.imshow("opening", opening)
# 使用cv2.waitKey(0)函数等待,直到用户按下任意键
cv2.waitKey(0)
# 使用cv2.destroyAllWindows()函数关闭所有OpenCV创建的窗口
cv2.destroyAllWindows()

运行结果:
在这里插入图片描述
具体优化效果根据卷积核而进行调整改变。

闭运算是先进行膨胀操作,然后进行腐蚀操作,用于填充物体内部的小洞或连接临近物体

经过闭运算:

# 导入OpenCV库,用于图像处理
import cv2
# 导入matplotlib的pyplot模块,用于图像显示
import matplotlib.pyplot as plt
# 导入numpy库,用于数值计算
import numpy as np# 使用cv2.imread()函数读取位于指定路径的图像文件
img = cv2.imread("E:\\XUEXI\\Python_learn\\tupian\\3.jpg")# 创建一个10x10的矩形结构元素,用于形态学操作
# np.ones((10,10),np.uint8)创建一个所有元素都是1的10x10矩阵
kernel = np.ones((10, 10), np.uint8)# 使用cv2.morphologyEx()函数对图像进行闭运算
# 闭运算是先进行膨胀操作,然后进行腐蚀操作,用于填充物体内部的小洞或连接临近物体
# cv2.MORPH_CLOSE指定要执行的形态学操作是闭运算
opening = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)# 使用cv2.imshow()函数显示闭运算后的图像
cv2.imshow("opening", opening)
# 使用cv2.waitKey(0)函数等待,直到用户按下任意键
cv2.waitKey(0)
# 使用cv2.destroyAllWindows()函数关闭所有OpenCV创建的窗口
cv2.destroyAllWindows()

运行结果:
在这里插入图片描述

三、梯度运算

梯度 = 膨胀 - 腐蚀,形态学梯度是膨胀和腐蚀操作的差值,用于突出物体的边缘

展示膨胀和腐蚀的效果:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg = cv2.imread("E:\\XUEXI\\Python_learn\\tupian\\4.jpg")kernel = np.ones((7, 7),np.uint8)
dilate = cv2.dilate(img,kernel,iterations = 5)
erosion = cv2.erode(img,kernel,iterations = 5)res = np.hstack((dilate , erosion))cv2.imshow("res",res)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
梯度计算:

# 导入OpenCV库,用于图像处理
import cv2
# 导入matplotlib的pyplot模块,用于图像显示
import matplotlib.pyplot as plt
# 导入numpy库,用于数值计算
import numpy as np# 使用cv2.imread()函数读取位于指定路径的图像文件
img = cv2.imread("E:\\XUEXI\\Python_learn\\tupian\\4.jpg")# 创建一个7x7的矩形结构元素,用于形态学操作
# np.ones((7,7),np.uint8)创建一个所有元素都是1的7x7矩阵
kernel = np.ones((7, 7), np.uint8)# 使用cv2.morphologyEx()函数计算图像的形态学梯度
# 形态学梯度是膨胀和腐蚀操作的差值,用于突出物体的边缘
# cv2.MORPH_GRADIENT指定要执行的形态学操作是梯度运算
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)# 使用cv2.imshow()函数显示形态学梯度后的图像
cv2.imshow("gradient", gradient)
# 使用cv2.waitKey(0)函数等待,直到用户按下任意键
cv2.waitKey(0)
# 使用cv2.destroyAllWindows()函数关闭所有OpenCV创建的窗口
cv2.destroyAllWindows()

运算结果:

在这里插入图片描述

四、礼帽与黑帽操作

礼帽 = 原始输入-开运算结果 礼帽变换的目的是突出图像中比其周围环境更亮的物体或特征。
黑帽 = 闭运算结果 - 原始输入 黑帽变换是图像的腐蚀版本减去图像的膨胀版本,用于突出比周围暗的物体

礼帽:

import cv2
import matplotlib.pyplot as plt
import numpy as npimg = cv2.imread("E:\\XUEXI\\Python_learn\\tupian\\3.jpg")kernel = np.ones((10, 10), np.uint8)
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)cv2.imshow("gradient",tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

运算结果:
在这里插入图片描述
原始输入(带有毛刺)- 开运算结果(去除毛刺) = 周围的毛刺(上图)
黑帽:

# 导入OpenCV库,用于图像处理
import cv2
# 导入matplotlib的pyplot模块,用于图像显示
import matplotlib.pyplot as plt
# 导入numpy库,用于数值计算
import numpy as np# 使用cv2.imread()函数读取位于指定路径的图像文件
img = cv2.imread("E:\\XUEXI\\Python_learn\\tupian\\3.jpg")# 创建一个10x10的矩形结构元素,用于形态学操作
# np.ones((10,10),np.uint8)创建一个所有元素都是1的10x10矩阵
kernel = np.ones((10, 10), np.uint8)# 使用cv2.morphologyEx()函数对图像进行黑帽变换
# 黑帽变换是图像的腐蚀版本减去图像的膨胀版本,用于突出比周围暗的物体
# cv2.MORPH_BLACKHAT指定要执行的形态学操作是黑帽变换
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)# 使用cv2.imshow()函数显示黑帽变换后的图像
cv2.imshow("blackhat", blackhat)
# 使用cv2.waitKey(0)函数等待,直到用户按下任意键
cv2.waitKey(0)
# 使用cv2.destroyAllWindows()函数关闭所有OpenCV创建的窗口
cv2.destroyAllWindows()

运行结果:
在这里插入图片描述

http://www.15wanjia.com/news/173667.html

相关文章:

  • 深圳网站seo 乐云践新电脑版网站制作公司
  • 外贸企业网站制作公司网店推广策划书
  • 公司做的网站怎么维护域名注册阿里
  • 制作营销型网站的公司昆山广告公司排名
  • 西安网站开发公司吉林省长春市
  • 如何防止别人攻击自己的网站免费可商用的cms
  • 域名指向国外服务器做网站wordpress七牛云设置
  • 建设银行网站用户登录seo关键字优化技巧
  • wordpress 数据库账号seo网站设计网页单页设计
  • 网站平台建设的作用小程序开发定制公司北京
  • 大专学网站开发wordpress移动
  • 南通网站建设协议专业团队朋友圈文案
  • 网站备案全国合作拍照点免费最好网站建设
  • 广东建设厅网站个人怎么登录啊拓者设计吧首页
  • 济南品牌网站制作便宜网站的网络营销方案
  • 专业做网站制作自助建站系统网站备案号在哪里看
  • 西宁市网站设计企业免费做英语卷子的网站
  • 网站seo快速优化网页代码大全
  • 网站多久才会被收录网上购物系统软件开发
  • 东莞网页模板建站电子商城网站开发价格
  • 网站设计师 网站开发工程师haai商城网站建设公司排名
  • 安徽太和有没有做网站的求职seo
  • 横峰网站建设开发一套小区多少钱
  • 科技公司 网站模板迷情 变性 wordpress
  • 河南无限动力做网站怎么样成都优化网站源头厂家
  • 祥云平台做网站如何雄安智能网站建设电话
  • 广州云购网站建设网站的在线支付怎么做
  • 保险购买网站山东省东营市建设局网站
  • 网站建设用到什么软件asp三层架构做网站
  • 北京企业展示网站建设网站开发 保修期