当前位置: 首页 > news >正文

别人的做网站中国网站

别人的做网站,中国网站,如何做网络运营,基于互联网怎样做网站推广安装之前可以先了解一下论文的主要内容,便于之后网络训练与推理,调试程序。 论文地址:nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation | Nature Methods 也可以从其他博客快速浏览&#xff1a…

安装之前可以先了解一下论文的主要内容,便于之后网络训练与推理,调试程序。

论文地址:nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation | Nature Methods

也可以从其他博客快速浏览:论文解读- nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation(附实现教程)_nnunet self adaptinng-CSDN博客

如果想跟官网github一样在ubuntu下安装参考:nnUNet保姆级使用教程!从环境配置到训练与推理(新手必看)-CSDN博客


1.本博客是在win11安装,前期Anaconda的虚拟环境自己配置好,然后下载好nnUnet v1的安装包,然后解压在该目中运行:

pip install -e .

如果需要观察模型的网络结构图可以安装hiddenlayer:

nnUNet给出的指令:

pip install --upgrade git+https://github.com/FabianIsensee/hiddenlayer.git@more_plotted_details#egg=hiddenlayer

 上面指令自己运行报错:

× git clone --filter=blob:none --quiet https://github.com/FabianIsensee/hiddenlayer.git 'C:\Users\Administrator\AppData\Local\Temp\pip-install-dh84s7ac\hiddenlayer_be2e7545caf44fbeae10f5b0cfd81e30' did not run successfully,可能是网络原因。干脆直接从hiddenlayer官网的指令进行安装(顺利安装):

pip install git+https://github.com/waleedka/hiddenlayer.git

 2.开始准备推理的数据,注意它的格式要求,开始体验一下如何用官网模型进行infer使用:

查看nnUNet提供的预训练好的模型:

nnUNet_print_available_pretrained_models
Task001_BrainTumour
Brain Tumor Segmentation.
Segmentation targets are edema, enhancing tumor and necrosis,
Input modalities are 0: FLAIR, 1: T1, 2: T1 with contrast agent, 3: T2.
Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task002_Heart
Left Atrium Segmentation.
Segmentation target is the left atrium,
Input modalities are 0: MRI.
Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task003_Liver
Liver and Liver Tumor Segmentation.
Segmentation targets are liver and tumors,
Input modalities are 0: abdominal CT scan.
Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task004_Hippocampus
Hippocampus Segmentation.
Segmentation targets posterior and anterior parts of the hippocampus,
Input modalities are 0: MRI.
Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task005_Prostate
Prostate Segmentation.
Segmentation targets are peripheral and central zone,
Input modalities are 0: T2, 1: ADC.
Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task006_Lung
Lung Nodule Segmentation.
Segmentation target are lung nodules,
Input modalities are 0: abdominal CT scan.
Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task007_Pancreas
Pancreas Segmentation.
Segmentation targets are pancras and pancreas tumor,
Input modalities are 0: abdominal CT scan.
Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task008_HepaticVessel
Hepatic Vessel Segmentation.
Segmentation targets are hepatic vesels and liver tumors,
Input modalities are 0: abdominal CT scan.
Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task009_Spleen
Spleen Segmentation.
Segmentation target is the spleen,
Input modalities are 0: abdominal CT scan.
Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task010_Colon
Colon Cancer Segmentation.
Segmentation target are colon caner primaries,
Input modalities are 0: CT scan.
Also see Medical Segmentation Decathlon, http://medicaldecathlon.com/Task017_AbdominalOrganSegmentation
Multi-Atlas Labeling Beyond the Cranial Vault - Abdomen.
Segmentation targets are thirteen different abdominal organs,
Input modalities are 0: abdominal CT scan.
Also see https://www.synapse.org/#!Synapse:syn3193805/wiki/217754Task024_Promise
Prostate MR Image Segmentation 2012.
Segmentation target is the prostate,
Input modalities are 0: T2.
Also see https://promise12.grand-challenge.org/Task027_ACDC
Automatic Cardiac Diagnosis Challenge.
Segmentation targets are right ventricle, left ventricular cavity and left myocardium,
Input modalities are 0: cine MRI.
Also see https://acdc.creatis.insa-lyon.fr/Task029_LiTS
Liver and Liver Tumor Segmentation Challenge.
Segmentation targets are liver and liver tumors,
Input modalities are 0: abdominal CT scan.
Also see https://competitions.codalab.org/competitions/17094Task035_ISBILesionSegmentation
Longitudinal multiple sclerosis lesion segmentation Challenge.
Segmentation target is MS lesions,
input modalities are 0: FLAIR, 1: MPRAGE, 2: proton density, 3: T2.
Also see https://smart-stats-tools.org/lesion-challengeTask038_CHAOS_Task_3_5_Variant2
CHAOS - Combined (CT-MR) Healthy Abdominal Organ Segmentation Challenge (Task 3 & 5).
Segmentation targets are left and right kidney, liver, spleen,
Input modalities are 0: T1 in-phase, T1 out-phase, T2 (can be any of those)
Also see https://chaos.grand-challenge.org/Task048_KiTS_clean
Kidney and Kidney Tumor Segmentation Challenge. Segmentation targets kidney and kidney tumors, Input modalities are 0: abdominal CT scan. Also see https://kits19.grand-challenge.org/Task055_SegTHOR
SegTHOR: Segmentation of THoracic Organs at Risk in CT images.
Segmentation targets are aorta, esophagus, heart and trachea,
Input modalities are 0: CT scan.
Also see https://competitions.codalab.org/competitions/21145Task061_CREMI
MICCAI Challenge on Circuit Reconstruction from Electron Microscopy Images (Synaptic Cleft segmentation task).
Segmentation target is synaptic clefts,
Input modalities are 0: serial section transmission electron microscopy of neural tissue.
Also see https://cremi.org/Task075_Fluo_C3DH_A549_ManAndSim
Fluo-C3DH-A549-SIM and Fluo-C3DH-A549 datasets of the cell tracking challenge. Segmentation target are C3DH cells in fluorescence microscopy images.
Input modalities are 0: fluorescence_microscopy
Also see http://celltrackingchallenge.net/Task076_Fluo_N3DH_SIM
Fluo-N3DH-SIM dataset of the cell tracking challenge. Segmentation target are N3DH cells and cell borders in fluorescence microscopy images.
Input modalities are 0: fluorescence_microscopy
Also see http://celltrackingchallenge.net/
Note that the segmentation output of the models are cell center and cell border. These outputs mus tbe converted to an instance segmentation for the challenge.
See https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunet/dataset_conversion/Task076_Fluo_N3DH_SIM.pyTask082_BraTS2020
Brain tumor segmentation challenge 2020 (BraTS)
Segmentation targets are 0: background, 1: edema, 2: necrosis, 3: enhancing tumor
Input modalities are 0: T1, 1: T1ce, 2: T2, 3: FLAIR (MRI images)
Also see https://www.med.upenn.edu/cbica/brats2020/Task089_Fluo-N2DH-SIM_thickborder_time
Fluo-N2DH-SIM dataset of the cell tracking challenge. Segmentation target are nuclei of N2DH cells and cell borders in fluorescence microscopy images.
Input modalities are 0: t minus 4, 0: t minus 3, 0: t minus 2, 0: t minus 1, 0: frame of interest
Note that the input channels are different time steps from a time series acquisition
Note that the segmentation output of the models are cell center and cell border. These outputs mus tbe converted to an instance segmentation for the challenge.
See https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunet/dataset_conversion/Task089_Fluo-N2DH-SIM.py
Also see http://celltrackingchallenge.net/Task114_heart_MNMs
Cardiac MRI short axis images from the M&Ms challenge 2020.
Input modalities are 0: MRI
See also https://www.ub.edu/mnms/
Note: Labels of the M&Ms Challenge are not in the same order as for the ACDC challenge.
See https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunet/dataset_conversion/Task114_heart_mnms.pyTask115_COVIDSegChallenge
Covid lesion segmentation in CT images. Data originates from COVID-19-20 challenge.
Predicted labels are 0: background, 1: covid lesion
Input modalities are 0: CT
See also https://covid-segmentation.grand-challenge.org/Task135_KiTS2021
Kidney and kidney tumor segmentation in CT images. Data originates from KiTS2021 challenge.
Predicted labels are 0: background, 1: kidney, 2: tumor, 3: cyst
Input modalities are 0: CT
See also https://kits21.kits-challenge.org/Task169_BrainTumorPET
Brain tumor segmentation in FET PET images. Data originates from the Research Center Jülich, Germany.
Predicted labels are 0: background, 1: tumor
Input modalities are 0: FET PET
See also (NOT YET AVAILABLE)

 需要类似于ubuntu系统下一样,设置环境临时变量:

set RESULTS_FOLDER=自己的硬盘根目录\nnUNet-nnunetv1\dataset\nnUNet_trained_models
set nnUNet_raw_data_base=自己的硬盘根目录\nnUNet-nnunetv1\dataset\nnUNet_raw
set nnUNet_preprocessed=自己的硬盘根目录\nnUNet-nnunetv1\dataset\nnUNet_preprocessed是否设置成功,可以通过
echo %RESULTS_FOLDER%
echo %nnUNet_raw_data_base%
echo %nnUNet_preprocessed%

3. 推理之前需要将数据按照nnUNet要求进行格式转换:

由于ubuntu跟win11系统路径格式不一样(不懂可以看下区别),需要提前修改相应的程序:

1)nnUNet_convert_decathlon_task.py中22行的“folder.split('/')[-1]”改成“folder.split('\\')[-1]”。

2)utils.py中40行的input_folder.split("/")[-1]改成input_folder.split("\\")[-1]

3) common_utils.py中26行的filename.split("/")[-1]改成filename.split("\\")[-1]

然后,根据数据格式转换说明:

nnUNet_convert_decathlon_task -i FOLDER_TO_TASK_AS_DOWNLOADED_FROM_MSD -p NUM_PROCESSES

具体指令:

nnUNet_convert_decathlon_task -i 自己存放数据集的路径\Task05_Prostate

运行结果目录如下:

以imagesTs为例:

按照官网进行数据预处理:

nnUNet_plan_and_preprocess -t XXX --verify_dataset_integrity

 XXX表示任务号;

nnUNet_plan_and_preprocess -t 005 --verify_dataset_integrity

4. 运行推理程序:

范例:
nnUNet_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -t TASK_NAME_OR_ID 
-m CONFIGURATION --save_npz

 这里需要注意一定要修改cropping.py中123行的i.split("/")[-1][:-4],将其修改为i.split("\\")[-1][:-4]。否则会报错误(这个错误很隐蔽,网上查了很多资料没有解决,一句句打断点找到的问题所在,debug不易,趟掉很多坑):

“return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting)
ValueError: need at least one array to concatenate”

检测一下nnUNet_cropped_data是否生成了预处理的文件(*.npz和*.pkl): 

 

nnUNet_predict -i 自己的路径\nnUNet_raw\nnUNet_raw_data\Task005_Prostate\imagesTs -o 自己的路径\nnUNet_raw\nnUNet_raw_data\Task005_Prostate\inferTs -t 5 -m 3d_fullres -f 0

运行结果:

推理后得到标注结果:

现在已基本掌握了如何利用nnUNet以后模型进行推理,先会用再学如何利用自己的数据进行训练,之后重点讲如何自定义训练。这篇博客主要是为了解决nnUNet如何在win11环境中解决数据转换和数据预处理,以及如何模型推理。目前国内win11环境安装配置为此独一份,原创来之不易,点赞收藏,后期更精彩。

http://www.15wanjia.com/news/169349.html

相关文章:

  • 工控机做网站服务器有没有做淘宝的网站
  • 网站开发asp.networdpress 改中文
  • 程序员接活的平台网站基金网站开发
  • 制作个人博客网站贵州专业网站建设公司哪家好
  • 安徽网站建设开发电话seo视频网页入口网站推广
  • 安徽合肥网站制作外链平台有哪些
  • 上海建筑工程网站wordpress ajax 慢
  • ppt的网站导航栏怎么做的百度云资源搜索平台
  • 做分析图网站抖音代运营剧本
  • 做it的要给赌场网站做维护吗包装设计公司商业模式
  • 网站新闻关键词wordpress专用空间
  • 怎么查看网站开发语言的类型建筑公司网站源码 php
  • 怎样只做自己的网站便宜 虚拟主机
  • 烟台网站建设烟台承德网站
  • 付公司网站费用怎么做分录郑州seo询搜点网络效果佳
  • 电子商务企业网站的基本功能天津市建行网站
  • iis 会影响 网站 速度国外有没有做物理小实验的网站
  • 网站为什么做黄词骗流量自己做网站帮公司出认证证书违法吗
  • 深圳建网站服务商安阳区号码
  • 南宁做网站价格公司建站后还要录入网页吗
  • 深圳做二维码网站建设德国网站建设
  • 图书馆网站建设教程网站制作费用及后期运营
  • 网站统计模板东莞南城网站开发公司电话
  • 在微信上做彩票网站网站迁移教程
  • 做网站的公司现在还 赚钱吗做网站找华企
  • 免费制作网站net域名学历提升专升本
  • 招网站开发人员手机网站你懂
  • 有网站怎么做企业邮箱网站什么时候恢复彩色
  • 凡科免费做网站平面设计培训机构排名
  • 浙江做网站的公司网站推广策划的思路包括哪些内容