当前位置: 首页 > news >正文

正规的常州网站推广做网站还有希望吗

正规的常州网站推广,做网站还有希望吗,seo推广软件哪个好,钓鱼网站在线下载KNN算法-模型选择与调优 文章目录 KNN算法-模型选择与调优1. 交叉验证2. 超参数搜索-网格搜索(Grid Search)3. 模型选择与调优API4. 鸢尾花种类预测-代码和输出结果5. 计算距离 问题背景:KNN算法的K值不好确定 1. 交叉验证 交叉验证&#x…

KNN算法-模型选择与调优

文章目录

  • KNN算法-模型选择与调优
    • 1. 交叉验证
    • 2. 超参数搜索-网格搜索(Grid Search)
    • 3. 模型选择与调优API
    • 4. 鸢尾花种类预测-代码和输出结果
    • 5. 计算距离

问题背景:KNN算法的K值不好确定

1. 交叉验证

交叉验证:将拿到的训练数据,分为训练集和验证集。以下表为例:将数据分成4份,其中一份作为验证集,然后经过4次(组)的测试,每次都更换不同的验证集。即得到4组模型的结果,取平均值作为最终的结果。这种又称作为4折交叉认证。

第一块第二块第三块第四块准确率
验证集训练集训练集训练集80%
训练集验证集训练集训练集78%
训练集训练集验证集训练集75%
训练集训练集训练集验证集82%

我们之前知道数据分为训练集和测试集,但是为了从训练得到的模型结果更加准确,做出以下处理

  • 训练集=训练集+验证集
  • 测试集=测试集

2. 超参数搜索-网格搜索(Grid Search)

通常情况下,有很多参数是要手动去指定的,如KNN算法中的K值,这种叫超参数。但是手动过程繁杂,我们可能会定义一个列表,里面有一堆K的值来遍历选择,相当于“暴力破解”。而网格搜索会采用交叉认证来进行评估,在你给定的一定范围内的K值中选出最优参数组合建立模型。

3. 模型选择与调优API

  • sklearn.model_selection.GridSearchCV(estimator,param_grid=None,cv=None)
    • 对估计器的指定参数值进行详尽搜索
    • estimator估计器对象
    • param_grid:估计器参数(dict){“n_neighbors":[1,3,5]}
    • cv:指定几折交叉验证
    • fit():输入训练数据
    • score():准确率
    • 结果分析:best_params_最佳参数,best_score_最佳结果,best_estimator_最佳估计器,cv_results_交叉验证结果

4. 鸢尾花种类预测-代码和输出结果

from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV# K—近邻算法
def KNN_demo():"""sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')n_neighbors:int可选,默认为5,k_neighbors查询默认使用的邻居数algorithm:{'auto','ball_tree','kd_tree','brute'},可选用于计算最近邻居的算法:‘ball_tree’将会使用BallTree,'kd_tree'将会使用KDTree。'auto'将尝试根据传递给fit方法的值来决定最合适的算法。(不同实现方式影响效率):return:"""# 获取数据iris = load_iris()# 划分数据集x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state= 6)# 特征工程 标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# KNN算法预估器estimator = KNeighborsClassifier(n_neighbors= 3)estimator.fit(x_train, y_train)# 模型评估# 方法一:y_predict = estimator.predict(x_test)print("y_predict:\n", y_predict)print("直接比对真实值和预测值:\n", y_test == y_predict)# 方法二:score = estimator.score(x_test, y_test)print("准确率为:\n", score)return None# KNN添加网格搜索和交叉认证
def KNN_gscv_demo():# 获取数据iris = load_iris()# 划分数据集x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6)# 特征工程 标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# KNN算法预估器estimator = KNeighborsClassifier()# 加入网格搜索和交叉认证param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]}estimator = GridSearchCV(estimator, param_grid= param_dict, cv =10)estimator.fit(x_train, y_train)# 模型评估# 方法一:y_predict = estimator.predict(x_test)print("y_predict:\n", y_predict)print("直接比对真实值和预测值:\n", y_test == y_predict)# 方法二:score = estimator.score(x_test, y_test)print("准确率为:\n", score)# 最佳print("最佳参数为:\n", estimator.best_params_)print("最佳结果:\n", estimator.best_score_)print("最佳估计器:\n", estimator.best_estimator_)print("交叉验证结果:\n", estimator.cv_results_)# 交叉验证结果为:训练集划分训练集和验证集之后的,不是整体的,和测试集无关return Noneif __name__ == "__main__":# KNN_demo() 没有添加网格搜索和交叉认证KNN_gscv_demo()pass
y_predict:[0 2 0 0 2 1 2 0 2 1 2 1 2 2 1 1 2 1 1 0 0 2 0 0 1 1 1 2 0 1 0 1 0 0 1 2 12]
直接比对真实值和预测值:[ True  True  True  True  True  True  True  True  True  True  True  TrueTrue  True  True False  True  True  True  True  True  True  True  TrueTrue  True  True  True  True  True  True  True  True  True False  TrueTrue  True]
准确率为:0.9473684210526315
最佳参数为:{'n_neighbors': 11}
最佳结果:0.9734848484848484
最佳估计器:KNeighborsClassifier(n_neighbors=11)
交叉验证结果:{'mean_fit_time': array([0.00010171, 0.        , 0.00030091, 0.        , 0.        ,0.00020049]), 'std_fit_time': array([0.00030513, 0.        , 0.00045964, 0.        , 0.        ,0.00040097]), 'mean_score_time': array([0.00110393, 0.00069332, 0.00051594, 0.00090301, 0.00085185,0.0005013 ]), 'std_score_time': array([0.00070476, 0.00039479, 0.00065858, 0.00030101, 0.00032043,0.0005013 ]), 'param_n_neighbors': masked_array(data=[1, 3, 5, 7, 9, 11],mask=[False, False, False, False, False, False],fill_value='?',dtype=object), 'params': [{'n_neighbors': 1}, {'n_neighbors': 3}, {'n_neighbors': 5}, {'n_neighbors': 7}, {'n_neighbors': 9}, {'n_neighbors': 11}], 'split0_test_score': array([1., 1., 1., 1., 1., 1.]), 'split1_test_score': array([0.91666667, 0.91666667, 1.        , 0.91666667, 0.91666667,0.91666667]), 'split2_test_score': array([1., 1., 1., 1., 1., 1.]), 'split3_test_score': array([1.        , 1.        , 1.        , 1.        , 0.90909091,1.        ]), 'split4_test_score': array([1., 1., 1., 1., 1., 1.]), 'split5_test_score': array([0.90909091, 0.90909091, 1.        , 1.        , 1.        ,1.        ]), 'split6_test_score': array([1., 1., 1., 1., 1., 1.]), 'split7_test_score': array([0.90909091, 0.90909091, 0.90909091, 0.90909091, 1.        ,1.        ]), 'split8_test_score': array([1., 1., 1., 1., 1., 1.]), 'split9_test_score': array([0.90909091, 0.81818182, 0.81818182, 0.81818182, 0.81818182,0.81818182]), 'mean_test_score': array([0.96439394, 0.95530303, 0.97272727, 0.96439394, 0.96439394,0.97348485]), 'std_test_score': array([0.04365767, 0.0604591 , 0.05821022, 0.05965639, 0.05965639,0.05742104]), 'rank_test_score': array([5, 6, 2, 3, 3, 1])}

5. 计算距离

K最近邻(KNN)是一种有监督的机器学习算法,它根据其K个最近邻居的大多数类别来对数据点进行分类。在使用KNN时,需要确定一个距离度量来衡量数据点之间的相似性。常用的KNN距离度量包括欧氏距离、曼哈顿距离和闵可夫斯基距离。

  1. 欧氏距离:

    • 欧氏距离是KNN中最常用的距离度量。

    • 它是欧几里得空间中两个点之间的直线距离

    • 在二维空间中,计算两个点(x1,y1)和(x2,y2)之间的欧氏距离的公式如下:

      ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 \sqrt{(x1 - x2)^2 + (y1 - y2)^2} (x1x2)2+(y1y2)2

    • 在n维空间中,公式扩展为:
      ∑ i = 1 n ( x i − y i ) 2 \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2} i=1n(xiyi)2

    • 这种距离度量对特征的尺度敏感,因此在使用时重要的是标准化或归一化特征。

  2. 曼哈顿距离:

    • 它以每个维度上的坐标绝对差的总和来衡量两个点之间的距离。

    • 在二维空间中,计算两个点(x1,y1)和(x2,y2)之间的曼哈顿距离的公式如下:
      ∣ x 1 − x 2 ∣ + ∣ y 1 − y 2 ∣ |x1 - x2| + |y1 - y2| x1x2∣+y1y2∣

    • 在n维空间中,公式扩展为:
      ∑ i = 1 n ∣ x i − y i ∣ \sum_{i=1}^{n}|x_i - y_i| i=1nxiyi

    • 曼哈顿距离对异常值不太敏感,因此在数据可能不服从正态分布的情况下,它是更好的选择。

  3. 闵可夫斯基距离:

    • 闵可夫斯基距离是欧氏距离和曼哈顿距离的通用化。
    • 它包括一个参数“p”,可以调整以将公式转换为欧氏或曼哈顿距离。
    • 当p=2时,它变为欧氏距离,当p=1时,它变为曼哈顿距离。
    • 两点(x,y)之间的闵可夫斯基距离的公式如下:
      ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 / p \left(\sum_{i=1}^{n}|x_i - y_i|^p\right)^{1/p} (i=1nxiyip)1/p

默认情况下,KNN使用欧氏距离作为距离度量。如果使用不同的距离度量(例如曼哈顿或闵可夫斯基距离),可以在KNeighborsClassifier构造函数中使用“metric”参数进行指定。例如:

estimator = KNeighborsClassifier(metric='manhattan')
http://www.15wanjia.com/news/169165.html

相关文章:

  • 图片搜索网站原创内容优化
  • 网站网页制作公司个人网站免备案吗
  • 濮阳做网站多少钱自助免费建站
  • 如何做摄影网站wordpress插件后门
  • 苏州网站开发公司兴田德润怎么联系上海的设计网站有哪些内容
  • vps网站压缩网站建设的目标和需求
  • 网站建设那里广州做网站建设的公司哪家好
  • 网站怎么做百科网站建设服务的风险
  • 国内做音乐网站杭州营销网站建设平台
  • 怎么上传自己做的网站保定企业免费建站
  • 怎么查询网站的域名重庆建设工程信息网官网二级建造师注册信息查询
  • 搜索网站定制公司交友免费的网站建设
  • 网站开发外包公司有哪些部门美食优秀设计网站
  • wordpress title 自定义哪有培训seo
  • 网站联动企业管理软件开发公司
  • 网站开发代做还有什么网站可以做面包车拉货
  • 购物网站建设珠海杭州的地区代码
  • 惠州网站建设l优选蓝速科技网站整合营销
  • 深圳有名的网站设计公司做外贸网站哪家公司好
  • 网站域名 空间自己动手建立个人网站
  • 都匀网站制作网络运营商无服务怎么恢复
  • 网站站内搜索代码做竞价推广的网站要求
  • 湖南企业网站网站按钮设计成什么颜色原因
  • 广告设计图片 创意长沙优化网站哪家公司好
  • 租个网站服务器多少钱如何注册咨询公司
  • 灰系网站提供网络推广服务
  • 怎么做帖子网站济南互联网公司排名
  • 免费网站重生九零做商女上海相亲网
  • 市网站制作青岛一点两区救治医院
  • 上海网站公公众号链接网站都是怎么做的