当前位置: 首页 > news >正文

网站qq客服制作cnzz

网站qq客服制作,cnzz,广告视频制作公司,wordpress网站科学主题下面是每种基因集评分方法的原理介绍代码示例,适用于R语言和Python两种主流生信分析环境。可以直接应用于单细胞转录组(scRNA-seq)数据分析中。 🔬 单细胞转录组基因集评分方法(附代码示例) 在单细胞RNA测…

下面是每种基因集评分方法的原理介绍+代码示例,适用于R语言和Python两种主流生信分析环境。可以直接应用于单细胞转录组(scRNA-seq)数据分析中。


🔬 单细胞转录组基因集评分方法(附代码示例)

在单细胞RNA测序(scRNA-seq)分析中,基因集评分(Gene Set Scoring)是一项关键任务,能帮助研究者识别细胞功能状态。本文介绍5种主流方法,并提供代码示例


1️⃣ AUCell:基于AUC的基因集活性评分

📌 原理

  • AUCell 使用 AUC(Area Under the Curve) 来计算基因集在单细胞数据中的活跃度
  • 不依赖数据标准化,适用于异质性较高的数据集。

💻 R 代码示例

# 1. 加载必要的包
library(AUCell)
library(SingleCellExperiment)# 2. 读取表达矩阵(假设 scRNA-seq 数据已转换为 SingleCellExperiment)
exprMatrix <- assay(sce, "counts")  # 取 count 数据# 3. 定义基因集
geneSet <- list(MyGeneSet = c("CD8A", "GZMB", "PRF1"))  # 以T细胞毒性相关基因为例# 4. 计算 AUC 分数
cells_rankings <- AUCell_buildRankings(exprMatrix, nCores = 1)
cells_AUC <- AUCell_calcAUC(geneSet, cells_rankings)# 5. 可视化结果
AUCell_plot(cells_AUC)

✅ 适用场景:适合用于检测高度活跃的基因集,例如肿瘤浸润T细胞的活化情况


2️⃣ ssGSEA:单样本基因集富集分析

📌 原理

  • 扩展自 GSEA,可计算每个样本的基因集富集得分
  • 适用于大规模数据,计算速度快,但受数据分布影响较大。

💻 R 代码示例

library(GSVA)
library(GSEABase)# 1. 读取数据
exprMatrix <- as.matrix(assay(sce, "logcounts"))  # 取 log-normalized 数据# 2. 定义基因集
geneSet <- GeneSet(setName = "T_Cell_Activation",geneIds = c("CD69", "IL2", "IFNG"),geneIdType = SymbolIdentifier())# 3. 运行 ssGSEA
ssgsea_scores <- gsva(exprMatrix, list(T_Cell_Activation = geneSet), method = "ssgsea")# 4. 绘制热图
heatmap(ssgsea_scores)

✅ 适用场景:适用于大规模数据分析,如免疫细胞功能状态的评估。


3️⃣ VAM:方差调整的马氏距离计算

📌 原理

  • 通过方差调整(Variance Adjustment)计算基因集活跃度,减少数据噪音的影响。
  • 适用于跨数据集分析,避免数据归一化带来的误差。

💻 Python 代码示例

import vam
import scanpy as sc# 1. 读取数据
adata = sc.read_h5ad("single_cell_data.h5ad")# 2. 定义基因集
gene_set = ["CD3D", "CD3E", "CD3G"]  # 例:T 细胞相关基因# 3. 计算 VAM 得分
vam_scores = vam.calculate_vam_score(adata, gene_set)# 4. 将得分存入 AnnData
adata.obs["VAM_score"] = vam_scores# 5. 可视化
sc.pl.umap(adata, color="VAM_score")

✅ 适用场景:适合用于跨数据集比较,如不同队列的免疫特征对比


4️⃣ UCell:基于秩和得分的评分方法

📌 原理

  • 采用 Spearman 秩和统计 方法计算基因集的活跃度
  • 计算效率高,适用于大规模单细胞数据

💻 R 代码示例

library(UCell)
library(Seurat)# 1. 读取 Seurat 数据
sce <- readRDS("single_cell_seurat.rds")# 2. 定义基因集
geneSet <- c("GATA3", "TBX21", "IL4")  # 例:Th1/Th2 相关基因# 3. 计算 UCell 评分
sce <- AddModuleScore_UCell(sce, features = list(Th1_Th2 = geneSet), name = "UCell")# 4. 可视化
FeaturePlot(sce, features = "UCell_Th1_Th2")

✅ 适用场景:适合大样本量数据,如全转录组水平的功能分析


5️⃣ Seurat AddModuleScore:Seurat环境下的简单评分方法

📌 原理

  • 计算目标基因集的表达均值,并与背景基因对比。
  • 适用于 Seurat 分析框架,但受批次效应影响较大。

💻 R 代码示例

library(Seurat)# 1. 读取 Seurat 数据
sce <- readRDS("seurat_obj.rds")# 2. 定义基因集
geneSet <- list(MyGeneSet = c("CCL5", "CXCL10", "GZMB"))  # 例:T 细胞趋化因子# 3. 计算模块得分
sce <- AddModuleScore(sce, features = geneSet, name = "MyGeneSet_Score")# 4. 可视化
FeaturePlot(sce, features = "MyGeneSet_Score1")

✅ 适用场景:适合Seurat 分析,如特定细胞亚群功能状态的评估


🔍 方法对比总结

方法计算方式是否需标准化计算效率适用场景
AUCellAUC 排序中等适用于高异质性数据
ssGSEA积分计算适用于大规模数据分析
VAM方差调整马氏距离中等适用于跨数据集分析
UCellSpearman 秩和适用于大规模数据
Seurat AddModuleScore均值计算适用于 Seurat 框架

📝 结论:如何选择最佳方法?

  • 研究细胞功能状态 → 试试 AUCellssGSEA
  • 想分析大规模数据?UCell 是你的最佳选择!
  • 在 Seurat 里工作?Seurat AddModuleScore 是最简单的方法!
  • 想减少批次效应影响? → 选择 VAM

http://www.15wanjia.com/news/16053.html

相关文章:

  • 网站评论管理怎么做的友情链接交换教程
  • 青岛硅谷网站建设公司今天头条新闻
  • 动态网站开发案例实训总结6制作网页链接
  • wordpress做视频网站吗网络推广外包公司排名
  • 网页游戏网址知乎西安seo排名公司
  • 怎样评价一个网站做的好与不好大数据营销经典案例
  • 网站制作前必须做的事情有哪些百度seo关键词优化推荐
  • 婚纱摄影网站模板之家百度快照查询入口
  • 网站备案和服务器备案今日热搜新闻头条
  • 网站做彩票网络营销优化推广
  • 在手机上怎么制作网站吗网站百度关键词优化
  • 网站建设与管理试题与答案短视频代运营方案模板
  • 珠海斗门网站建设外贸做网站公司哪家好
  • 宏润建设集团网站百度收录软件
  • 中纪委网站两学一做 重拾自信seo排名的公司
  • 做图软件下载官方网站百度商业账号登录
  • 中国城乡建设部证件查询网站旅游推广赚佣金哪个平台好
  • 博彩网站开发成本推广网站要注意什么
  • 个人网站企业备案区别建立一个网站需要多少钱?
  • 用css设计网页的代码墨子学院seo
  • 重庆南坪网站建设不受限制的浏览器
  • 帝国网站网站手机版怎么做怎么看百度关键词的搜索量
  • pbootcms快速仿站广东seo推广
  • 陕西网站制创建网站需要什么条件
  • 那些网站反爬做的好想做网站找什么公司
  • 网站开发得花多少钱北京百度总部
  • 工信部网站 备案最新百度快速收录技术
  • 渭南网站建设今日竞彩足球最新比赛结果查询
  • 网站规划和构成自己做一个网站要多少钱
  • 淄博那里有做网站的嘉兴seo计费管理