当前位置: 首页 > news >正文

成都网站优化方式正规的网站建设专业公司

成都网站优化方式,正规的网站建设专业公司,宣传片制作公司报价及图片,找室内设计公司文章目录 abstract极限👺极限的主要问题 数列极限数列极限的定义 ( ϵ − N ) (\epsilon-N) (ϵ−N)语言描述极限表达式成立的证明极限发散证明常用数列极限数列极限的几何意义例 函数的极限 abstract 数列极限 极限👺 极限分为数列的极限和函数的极限…

文章目录

abstract

  • 数列极限

极限👺

  • 极限分为数列的极限和函数的极限
  • 函数的极限又有6种极限过程:形式地记为 x → ∗ x\to{*} x,其中 ∗ * 可能是:
    • x 0 , x 0 − , x 0 + x_0,x_0^{-},x_0^{+} x0,x0,x0+
    • ∞ , − ∞ , + ∞ \infin,-\infin,+\infin ,,+

极限的主要问题

  • 求给定数列或函数的极限值
  • 证明给定数列或函数的极限是某个值(通常用极限的定义法作证明)

数列极限

数列极限的定义@ ( ϵ − N ) (\epsilon-N) (ϵN)语言描述

  • 若对任何的 ϵ > 0 \epsilon>0 ϵ>0,若存在 N > 0 N>0 N>0,当 n > N n>N n>N时,有 ∣ a n − A ∣ < ϵ |a_{n}-A|<\epsilon anA<ϵ,称 A A A为数列 { a n } \set{a_{n}} {an}的极限,记为 lim ⁡ n → ∞ a n = A \lim\limits_{n\to{\infin}}{a_n}=A nliman=A或记为 x n → a ( n → ∞ ) x_n\rightarrow a(n\rightarrow \infin) xna(n),不引起混淆的情况下,还可以简写为 x n → a x_n\to{a} xna
  • 半形式化语言描述: ∀ ε > 0 , ∃ N > 0 , \forall \varepsilon>0,\exist N>0, ε>0,N>0, when: n > N n>N n>N,then: ∣ a n − A ∣ < ε |a_n-A|<\varepsilon anA<ε,记为 lim ⁡ n → + ∞ a n = A \lim\limits_{n\to{+\infin}}a_{n}=A n+liman=A

极限表达式成立的证明

  • 证明数列极限的常用方法是用数列极限的定义证明
  • lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infin}{x_n}=a nlimxn=a,则 lim ⁡ n → ∞ ∣ x n ∣ = ∣ a ∣ \lim\limits_{n\to\infin}{|x_n|}=|a| nlimxn=a
    • 由条件, ∀ ϵ > 0 \forall{\epsilon}>0 ϵ>0, ∃ N > 0 \exist{N>0} N>0,当 n > N n>N n>N时有 ξ = ∣ x n − a ∣ < ϵ \xi=|x_n-a|<\epsilon ξ=xna<ϵ(1)
    • 构造 Δ = ∣ ∣ x n ∣ − ∣ a ∣ ∣ \Delta=||x_n|-|a|| Δ=∣∣xna∣∣,只要说明 ∀ ϵ > 0 \forall{\epsilon}>0 ϵ>0, ∃ N > 0 \exist{N>0} N>0,当 n > N n>N n>N时有 Δ < ϵ \Delta<\epsilon Δ<ϵ,即可证明结论成立
    • 由绝对值不等式, Δ < ∣ x n − a ∣ \Delta<|x_n-a| Δ<xna(2),(2)代入(1),得 Δ < ϵ \Delta<\epsilon Δ<ϵ,所以 lim ⁡ n → ∞ ∣ x n ∣ = ∣ a ∣ \lim\limits_{n\to\infin}{|x_n|}=|a| nlimxn=a
    • Note:该命题的逆命题不成立,因为 Δ < ϵ \Delta<\epsilon Δ<ϵ ⇏ \not\Rightarrow ξ < ϵ \xi<\epsilon ξ<ϵ;例如: x n = ( − 1 ) n x_n=(-1)^n xn=(1)n,则 lim ⁡ n → ∞ ∣ x n ∣ = 1 = ∣ 1 ∣ \lim\limits_{n\to\infin}{|x_n|}=1=|1| nlimxn=1=∣1∣;而 lim ⁡ n → ∞ ( − 1 ) n \lim\limits_{n\to\infin}{(-1)^{n}} nlim(1)n不存在
  • 推论:
    • lim ⁡ n → ∞ x n = 0 \lim\limits_{n\to\infin}{x_n}=0 nlimxn=0,的充要条件是: lim ⁡ n → ∞ ∣ x n ∣ = 0 \lim\limits_{n\to\infin}{|x_n|}=0 nlimxn=0
      • 有上结论可知必要性成立
      • 充分性:若 lim ⁡ n → ∞ ∣ x n ∣ = 0 \lim\limits_{n\to\infin}{|x_n|}=0 nlimxn=0, ∀ ϵ > 0 \forall{\epsilon}>0 ϵ>0, ∃ N > 0 \exist{N>0} N>0,当 n > N n>N n>N时有 Δ = ∣ ∣ x n ∣ − 0 ∣ < ϵ \Delta=||x_n|-0|<\epsilon Δ=∣∣xn0∣<ϵ成立,即 ∣ ∣ x n − 0 ∣ ∣ = ∣ x n − 0 ∣ < ϵ ||x_n-0||=|x_n-0|<\epsilon ∣∣xn0∣∣=xn0∣<ϵ,从而 lim ⁡ n → ∞ x n = 0 \lim\limits_{n\to\infin}{x_n}=0 nlimxn=0

极限发散证明

  • 证明极限发散,即证明数列极限不存在,仍然可以通过极限的定义入手证明
  • 通常是通过取一个正数 ϵ = ϵ 0 > 0 \epsilon=\epsilon_0>0 ϵ=ϵ0>0说明 ϵ 0 \epsilon_0 ϵ0的取值下,“ ∄ N ∈ Z \not\exist{N}\in\mathbb{Z} NZ,能使得当 n > N n>N n>N, ∣ x n − a ∣ < ϵ 0 |x_{n}-a|<\epsilon_0 xna<ϵ0恒成立”
  • 例:
    • 证明数列 x n = ( − 1 ) n + 1 x_n=(-1)^{n+1} xn=(1)n+1, ( n = 1 , 2 , ⋯ ) (n=1,2,\cdots) (n=1,2,)是发散的
    • 若数列收敛,则其有唯一极限,不妨设极限存在且等于 a a a,
    • 按极限定义,对于 ∀ ϵ > 0 \forall{\epsilon}>0 ϵ>0, ∃ N ∈ N + \exist{N}\in\mathbb{N_+} NN+,当 n > N n>N n>N时有 ∣ x n − a ∣ < ϵ |x_n-a|<\epsilon xna<ϵ
    • 对于本例,不妨取 ϵ = 1 2 \epsilon=\frac{1}{2} ϵ=21,则 ∣ x n − a ∣ < 1 2 |x_n-a|<\frac{1}{2} xna<21,而根据 x n x_n xn的同向公式可知, x n x_n xn重复取 − 1 , 1 -1,1 1,1,当 x n = − 1 x_n=-1 xn=1时, ∣ − 1 − a ∣ > 1 {|-1-a|}>1 1a>1,与 ∣ x n − a ∣ < 1 2 |x_n-a|<\frac{1}{2} xna<21矛盾,从而 { x n } \set{x_n} {xn}不存在极限 a a a
    • 所以 { x n } \set{x_n} {xn}发散

常用数列极限

  • lim ⁡ n → ∞ q n \lim\limits_{n\to\infin}{q^{n}} nlimqn= 0 0 0, ∣ q ∣ < 1 |q|<1 q<1;
  • lim ⁡ n → ∞ 1 n α = 0 \lim\limits_{n\to\infin}{\frac{1}{n^{\alpha}}}=0 nlimnα1=0, α > 0 \alpha>0 α>0

数列极限的几何意义

  • lim ⁡ n → ∞ x n = a \lim\limits_{n\to{\infin}}x_n=a nlimxn=a的几何意义是:以数轴为背景,对于 a a a点的任意 ϵ \epsilon ϵ邻域 U ( a , ϵ ) U(a,\epsilon) U(a,ϵ),即开区间 ( a − ϵ , a + ϵ ) (a-\epsilon,a+\epsilon) (aϵ,a+ϵ),一定存在 N N N,使得当 n > N n>N n>N,即第 N N N项后的点 x n x_n xn都落在开区间 U ( a , ϵ ) U(a,\epsilon) U(a,ϵ)内,而只有有限个点落在该区间以外
  • lim ⁡ n → ∞ ( n + 1 n ) ( − 1 ) n \lim\limits_{n\to\infin}(\frac{n+1}{n})^{(-1)^{n}} nlim(nn+1)(1)n= 1 1 1
  • 分析: lim ⁡ n → ∞ ( 2 n 2 n − 1 ) \lim\limits_{n\to\infin}(\frac{2n}{2n-1}) nlim(2n12n)=1; lim ⁡ n → ∞ ( 2 n + 1 2 n ) \lim\limits_{n\to\infin}(\frac{2n+1}{2n}) nlim(2n2n+1)=1

函数的极限

  • 另见: 函数极限
http://www.15wanjia.com/news/160240.html

相关文章:

  • 淘宝网站建设可以申请赔款厦门建设银行网站
  • 成都网站设公司计算机前端
  • 唯品会官网一家做特卖的网站营销型网站的建站步骤是什么意思
  • 学生网站做兼职网站建设公司海南
  • 315晚会 网站建设公司个人视频网站制作
  • 无锡做网站排名雪狼网站系统
  • 免费上外国网站的浏览器如何查看一个网站是什么程序做的
  • 花钱做网站需要所有权淘金企业网站建设服务
  • 视频网站开发文档wordpress取消footer
  • 搜狗网站做滤芯怎么样小程序样式模板
  • 海南省住建设厅网站报监华为的网站建设
  • 如何用网站做淘客安徽省住房建设工程信息网站
  • 站长工具综合查询2020WordPress报错关闭
  • 国外企业网站设计欣赏哪个女装网站做的好
  • 修机械师怎么做我小样网站角仰望官网cms系统
  • 医院网站建设滞后推广技巧
  • 做一个商城网站品牌网站建设定制
  • 厦门怎么没有 网站备案珠宝网站制作
  • 商城网站支付端怎么做wordpress 302跳转
  • 网站开发为什么要写接口企业用酒解决方案
  • 怎样可以查到做网站公司一个人能建网站吗
  • 网站建设的常见问题怎么建设外贸网站
  • 工会网站建设方案wordpress置顶功能
  • 网站开发的项目内容抄袭网站违法
  • 前端开发可以做网站运营吗公司内部 网站开发
  • 广州专业做网站公司有哪些wordpress官方
  • 东阳网站建设公司做一套品牌设计多少钱
  • 有了网站源代码石家庄网站优化推广
  • wap网站如何推广网页设计和网站设计
  • 建设网站公司兴田德润官方地址郑州网站建设七彩科技