当前位置: 首页 > news >正文

新乡企业网站建设深圳网络推广方法

新乡企业网站建设,深圳网络推广方法,网页上做网会员网站备案怎么写,南昌专业网站建设前言: Hello大家好,我是Dream。 今天来学习一下如何使用基于tensorflow和keras的迁移学习完成猫狗分类,欢迎大家一起前来探讨学习~ 本文目录:一、加载数据集1.调用库函数2.加载数据集3.数据集管理二、猫狗数据集介绍1.猫狗数据集介…

在这里插入图片描述

前言: Hello大家好,我是Dream。 今天来学习一下如何使用基于tensorflow和keras的迁移学习完成猫狗分类,欢迎大家一起前来探讨学习~

本文目录:

  • 一、加载数据集
    • 1.调用库函数
    • 2.加载数据集
    • 3.数据集管理
  • 二、猫狗数据集介绍
    • 1.猫狗数据集介绍:
    • 2.图片展示
  • 三、MobileNetV2网络介绍
    • 1.加载tensorflow提供的预训练模型
    • 2.轻量级网络——MobileNetV2
    • 3.MobileNetV2的网络模块
  • 四、搭建迁移学习
    • 1.训练
    • 2.训练结果可视化
    • 3.输出训练的准确率
    • 4.用cnn工具可视化一批数据的预测结果
    • 5.数据输出
    • 6.用cnn工具可视化一个数据样本的各层输出
    • 7.输出结果图像
  • 五、源码获取

说明:在此试验下,我们使用的是使用tf2.x版本,在jupyter环境下完成
在本文中,我们将主要完成以下任务:

  1. 实现基于tensorflow和keras的迁移学习

  2. 加载tensorflow提供的数据集(不得使用cifar10)

  3. 需要使用markdown单元格对数据集进行说明

  4. 加载tensorflow提供的预训练模型(不得使用vgg16)

  5. 需要使用markdown单元格对原始模型进行说明

  6. 网络末端连接任意结构的输出端网络

  7. 用图表显示准确率和损失函数

  8. 用cnn工具可视化一批数据的预测结果

  9. 用cnn工具可视化一个数据样本的各层输出

一、加载数据集

1.调用库函数

import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
import cnn_utils
from tensorflow.keras.preprocessing import image_dataset_from_directory
from tensorflow.keras.layers import GlobalAveragePooling2D,Dense,Input,Dropout

2.加载数据集

数据集加载,数据是通过这个网站下载的猫狗数据集:http://aimaksen.bslience.cn/cats_and_dogs_filtered.zip,实验中为了训练方便,我们取了一个较小的数据集。

path_to_zip = tf.keras.utils.get_file('data.zip',origin='http://aimaksen.bslience.cn/cats_and_dogs_filtered.zip',extract=True,
)
PATH = os.path.join(os.path.dirname(path_to_zip), 'cats_and_dogs_filtered')train_dir = os.path.join(PATH, 'train')
validation_dir = os.path.join(PATH, 'validation')BATCH_SIZE = 32
IMG_SIZE = (160, 160)

3.数据集管理

使用image_dataset_from_director进行数据集管理,使用ImageDataGenerator训练过程中会出现错误,不知道是什么原因,就使用了原始的image_dataset_from_director方法进行数据集管理。

train_dataset = image_dataset_from_directory(train_dir,shuffle=True,batch_size=BATCH_SIZE,image_size=IMG_SIZE)validation_dataset = image_dataset_from_directory(validation_dir,shuffle=True,batch_size=BATCH_SIZE,image_size=IMG_SIZE)

二、猫狗数据集介绍

1.猫狗数据集介绍:

猫狗数据集包括25000张训练图片,12500张测试图片,包括猫和狗两种图片。在此次实验中为了训练方便,我们取了一个较小的数据集。 数据解压之后会有两个文件夹,一个是 “train”,一个是 “test”,顾名思义一个是用来训练的,另一个是作为检验正确性的数据。
在这里插入图片描述
在train文件夹里边是一些已经命名好的图像,有猫也有狗。而在test文件夹中是只有编号名的图像。
在这里插入图片描述

2.图片展示

下面是数据集中的图片展示:

class_names = ['cats', 'dogs']plt.figure(figsize=(10, 10))
for images, labels in train_dataset.take(1):for i in range(9):ax = plt.subplot(3, 3, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

🌟🌟🌟 这里是输出的结果:✨✨✨
在这里插入图片描述

三、MobileNetV2网络介绍

1.加载tensorflow提供的预训练模型

val_batches = tf.data.experimental.cardinality(validation_dataset)
test_dataset = validation_dataset.take(val_batches // 5)
validation_dataset = validation_dataset.skip(val_batches // 5)

2.轻量级网络——MobileNetV2

使用轻量级网络——MobileNetV2进行数据预处理 说明: MobileNetV2是基于倒置的残差结构,普通的残差结构是先经过 1x1 的卷积核把 feature map的通道数压下来,然后经过 3x3 的卷积核,最后再用 1x1 的卷积核将通道数扩张回去,即先压缩后扩张,而MobileNetV2的倒置残差结构是先扩张后压缩
在这里插入图片描述

3.MobileNetV2的网络模块

MobileNetV2的网络模块样子是这样的:
在这里插入图片描述
MobileNetV2是基于深度级可分离卷积构建的网络,它是将标准卷积拆分为了两个操作:深度卷积 和 逐点卷积,深度卷积和标准卷积不同,对于标准卷积其卷积核是用在所有的输入通道上,而深度卷积针对每个输入通道采用不同的卷积核,就是说一个卷积核对应一个输入通道,所以说深度卷积是depth级别的操作。而逐点卷积其实就是普通的卷积,只不过其采用1x1的卷积核。
MobileNetV2的模型如下图所示,其中t为Bottleneck内部升维的倍数,c为通道数,n为该bottleneck重复的次数,s为sride
在这里插入图片描述

其中,当stride=1时,才会使用elementwise 的sum将输入和输出特征连接(如下图左侧);stride=2时,无short cut连接输入和输出特征(下图右侧):
在这里插入图片描述

四、搭建迁移学习

1.训练

inital_input = tf.keras.applications.mobilenet_v2.preprocess_input
IMG_SHAPE = IMG_SIZE + (3,)
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,include_top=False,weights='imagenet')
base_model.trainable = False
base_model.summary()

🌟🌟🌟 这里是输出的结果:✨✨✨
在这里插入图片描述

2.训练结果可视化

用图表显示准确率和损失函数

# 训练结果可视化,用图表显示准确率和损失函数
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range=range(initial_epochs)
plt.figure(figsize=(8,8))
plt.subplot(2,1,1)
plt.plot(epochs_range, acc, label="Training Accuracy")
plt.plot(epochs_range, val_acc,label="Validation Accuracy")
plt.legend()
plt.title("Training and Validation Accuracy")plt.subplot(2,1,2)
plt.plot(epochs_range, loss, label="Training Loss")
plt.plot(epochs_range, val_loss,label="Validation Loss")
plt.legend()
plt.title("Training and Validation Loss")
plt.show()

🌟🌟🌟 这里是输出的结果:✨✨✨
在这里插入图片描述

3.输出训练的准确率

# 输出训练的准确率
test_loss, test_accuracy = model.evaluate(test_dataset)
print('test accuracy: {:.2f}'.format(test_accuracy))

🌟🌟🌟 这里是输出的结果:✨✨✨
在这里插入图片描述

4.用cnn工具可视化一批数据的预测结果

label_dict = {0: 'cat',1: 'dog'
}test_image_batch, test_label_batch = test_dataset.as_numpy_iterator().next()
# 编码成uint8 以图片形式输出
test_image_batch = test_image_batch.astype('uint8')cnn_utils.plot_predictions(model, test_image_batch, test_label_batch, label_dict, 32, 5, 5)

🌟🌟🌟 这里是输出的结果:✨✨✨
在这里插入图片描述

5.数据输出

# 数据输出,数字化特征图
test_image_batch, test_label_batch = train_dataset.as_numpy_iterator().next()img_idx = 0
random_batch = np.random.permutation(np.arange(0,len(test_image_batch)))[:BATCH_SIZE]
image_activation = test_image_batch[random_batch[img_idx]:random_batch[img_idx]+1]cnn_utils.get_activations(base_model, image_activation[0])

🌟🌟🌟 这里是输出的结果:✨✨✨
在这里插入图片描述

6.用cnn工具可视化一个数据样本的各层输出

cnn_utils.display_activations(cnn_utils.get_activations(base_model, image_activation[0]))

🌟🌟🌟 这里是输出的结果:✨✨✨
在这里插入图片描述

7.输出结果图像

🌟🌟🌟 这里是输出的结果:✨✨✨
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

五、源码获取

关注此公众号:人生苦短我用Pythons,回复 神经网络源码获取源码,快点击我吧

🌲🌲🌲 好啦,这就是今天要分享给大家的全部内容了,我们下期再见!
❤️❤️❤️如果你喜欢的话,就不要吝惜你的一键三连了~
在这里插入图片描述
在这里插入图片描述

最后,有任何问题,欢迎关注下面的公众号,获取第一时间消息、作者联系方式及每周抽奖等多重好礼! ↓↓↓

http://www.15wanjia.com/news/15792.html

相关文章:

  • 现在做网站需要多少钱百度百家号官网
  • 做网站市场大不大肇庆网站推广排名
  • 中小企业网站的建设实践报告营销软文300字范文
  • 做卡盟网站百度seo优化排名客服电话
  • 怎么在百度上做免费网站深圳有实力的seo公司
  • 如何制作一个软件北京搜索引擎优化主管
  • 商务网站建设与规划网站seo设置是什么意思
  • 广州网站公司推荐营销手机系统安装
  • 网站推广策略包括哪些内容外贸建站网站推广
  • 辽阳企业网站建设新闻源发稿平台
  • 电子商务网站建设的安全性苏州百度推广代理商
  • 网站开发费 税率做网上营销怎样推广
  • 网站添加在线qq聊天网站注册信息查询
  • 北仑网站建设网站2022最近热点事件及评述
  • 做设计不能不知道的网站友情链接互换
  • vi设计英文系统优化的例子
  • 日本做h视频在线观看网站外包网络推广
  • 网站编程课程设计心得体会万网域名官网
  • 中英文切换网站模板推广游戏赚钱的平台
  • 网站域名怎么做搜索引擎优化怎么做
  • 为什么要建手机网站一呼百应推广平台
  • 广州站长优化网站首页
  • 做网站卖东西赚钱吗百度推广登陆首页
  • 如何修改公司网站内容百度网盘下载的文件在哪
  • 做网站要先申请域名吗b站推广入口2023
  • ps做网站页面步骤企业网站设计公司
  • 利用店铺网站做灰色优化平台做推广的技巧
  • 网站建设实施文档国际要闻
  • 企业邮箱大全号码大全宁波seo推荐推广平台
  • 网站建设与管理学什么好看的网页设计作品