当前位置: 首页 > news >正文

怎么做网站优化 s惠州制作网站软件

怎么做网站优化 s,惠州制作网站软件,智慧团建初始密码,建设网站要多久操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 比较两个直方图。 函数 cv::compareHist 使用指定的方法比较两个密集或两个稀疏直方图。 该函数返回 d ( H 1 , H 2 ) d(H_1, H_2) d(H1​,H2​…
  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

比较两个直方图。

函数 cv::compareHist 使用指定的方法比较两个密集或两个稀疏直方图。
该函数返回 d ( H 1 , H 2 ) d(H_1, H_2) d(H1,H2)
虽然该函数在处理一维、二维或三维的密集直方图时效果很好,但它可能不适合高维的稀疏直方图。在这样的直方图中,由于别名(aliasing)和采样问题,非零直方图bin的坐标可能会略微偏移。为了比较这样的直方图或更一般的加权点的稀疏配置,可以考虑使用 EMD 函数。

compareHist 是 OpenCV 中用于比较两个直方图相似性的函数。这个函数可以用来衡量两个直方图之间的差异或相似程度,常用于图像处理和计算机视觉任务中,比如图像检索、图像匹配或特征比较等。

函数原型1

ouble cv::compareHist
(InputArray 	H1,InputArray 	H2,int 	method 
)		

参数1

  • 参数H1 第一个被比较的直方图。
  • 参数H2 第二个被比较的直方图,与 H1 具有相同的尺寸。
  • 参数method 比较方法,参见 HistCompMethods。

函数原型2

这是一个重载的成员函数,为了方便而提供。它与上述函数的不同之处仅在于它接受的参数。

double cv::compareHist
(const SparseMat & 	H1,const SparseMat & 	H2,int 	method 
)		

代码示例


#include <iostream>
#include <opencv2/opencv.hpp>int main()
{// 加载两幅图像cv::Mat image1 = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/qiu.jpg", cv::IMREAD_GRAYSCALE );cv::Mat image2 = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/qiu2.png", cv::IMREAD_GRAYSCALE );if ( image1.empty() || image2.empty() ){std::cerr << "Error: Images not found or unable to read." << std::endl;return -1;}// 计算两个图像的直方图int histSize           = 256;float range[]          = { 0, 256 };const float* histRange = { range };bool uniform           = true;bool accumulate        = false;cv::Mat hist1, hist2;calcHist( &image1, 1, 0, cv::Mat(), hist1, 1, &histSize, &histRange, uniform, accumulate );calcHist( &image2, 1, 0, cv::Mat(), hist2, 1, &histSize, &histRange, uniform, accumulate );// 归一化直方图cv::normalize( hist1, hist1, 0, 1, cv::NORM_MINMAX, -1, cv::Mat() );cv::normalize( hist2, hist2, 0, 1, cv::NORM_MINMAX, -1, cv::Mat() );// 比较两个直方图double result_correlation   = compareHist( hist1, hist2, cv::HISTCMP_CORREL );double result_chisqr        = compareHist( hist1, hist2, cv::HISTCMP_CHISQR );double result_intersect     = compareHist( hist1, hist2, cv::HISTCMP_INTERSECT );double result_bhattacharyya = compareHist( hist1, hist2, cv::HISTCMP_BHATTACHARYYA );std::cout << "Correlation: " << result_correlation << std::endl;std::cout << "Chi-Squared: " << result_chisqr << std::endl;std::cout << "Intersection: " << result_intersect << std::endl;std::cout << "Bhattacharyya Distance: " << result_bhattacharyya << std::endl;return 0;
}

运行结果

在这里插入图片描述

输出结果解释

  1. Correlation (相关性):

    • 含义:相关性比较方法衡量两个直方图之间的线性关系。值范围通常在 -1 到 1 之间。
    • 结果:result_correlation 表示两个直方图的相关性得分。
    • 解释:如果结果接近 1,则表示两个直方图高度相关;如果接近 0,则表示没有相关性;如果接近 -1,则表示负相关。
  2. Chi-Squared (卡方):

    • 含义:卡方比较方法衡量两个直方图之间的差异。值范围通常是非负数。
    • 结果:result_chisqr 表示两个直方图的卡方得分。
    • 解释:如果结果接近 0,则表示两个直方图非常相似;如果结果较大,则表示两个直方图差异较大。
  3. Intersection (交集):

    • 含义:交集比较方法衡量两个直方图的交集部分。值范围通常在 0 到 1 之间。
    • 结果:result_intersect 表示两个直方图的交集得分。
    • 解释:如果结果接近 1,则表示两个直方图高度重合;如果接近 0,则表示几乎没有重合。
  4. Bhattacharyya Distance (巴塔查里雅距离):

    • 含义:巴塔查里雅距离衡量两个概率分布之间的相似性。值范围通常是非负数。
    • 结果:result_bhattacharyya 表示两个直方图的巴塔查里雅距离。
    • 解释:如果结果接近 0,则表示两个直方图非常相似;如果结果较大,则表示两个直方图差异较大。
http://www.15wanjia.com/news/157054.html

相关文章:

  • 南昌制作网站的公司吗扬中网站设计公司
  • 怎么用宝塔做网站做的网站没有手机版
  • 旅游网站设计策划书免费自建网站
  • 企业备案做电影网站的后果广州市南沙建设局网站
  • 做网站移动端建多大尺寸网站在布局
  • js实现网站浮动窗口网站前期准备
  • 网站开发主要学什么湖南长沙旅游攻略
  • 仙游h5做网站163企业邮箱下载
  • 红色系 网站织梦网站tel标签
  • 简述dw网站开发流程wordpress怎么增加语言
  • 动态ip上做网站免费发布信息网站平台
  • 网站换模板影响许昌网站建设汉狮套餐
  • 网站备案被拒菜谱网站开发
  • 深圳市建设工程造价管理站百度视频
  • 手机网站设计只找亿企邦属于网站设计内容的是
  • seo网站设计外包晚上偷偷奖励自己的软件
  • 一个网站的制作流程网站开发研发合同
  • 教育培训网站案例莆田百度推广开户
  • 多语言网站建设幻境装饰设计公司官网
  • 制作网站费用分类wordpress建企业站教程
  • 系统和网站哪个简单一点济南软件制作
  • 崇左网站建设公司网站开发心得500字
  • 福田专业网站建设公司哪家好自己做影视网站
  • 网站页面设计如何快速定稿网站的运作流程
  • php网站建设视频教程网站后台页面进不去
  • 河北邢台房价多少钱一平方企业网站优化链接
  • 10个网站 云主机需求中型企业名录查询系统
  • 网网站设计wordpress图片轮播插件下载
  • 网站系统名称可以搜索任何网站的浏览器
  • PHP网站开发案例12源代码云南网站推广公司