当前位置: 首页 > news >正文

有关网站建设文章做网站需要多久

有关网站建设文章,做网站需要多久,沈阳企业网站怎样制作,推广文案是什么微积分基础(python) 文章目录 微积分基础(python)1 函数与极限2 求导与微分3 不定积分4 定积分 1 函数与极限 # 导入sympy库 from sympy import * # 将x符号化 x Symbol("x") xx \displaystyle x x # 利用sympy中solve函数求解方程 X solve(x**2-10*x21,x) X pri…

微积分基础(python)

文章目录

  • 微积分基础(python)
      • 1 函数与极限
      • 2 求导与微分
      • 3 不定积分
      • 4 定积分

1 函数与极限

# 导入sympy库
from sympy import *
# 将x符号化
x = Symbol("x")
x

x \displaystyle x x

# 利用sympy中solve函数求解方程
X = solve(x**2-10*x+21,x)
X
print("原方程的解为:",X)
原方程的解为: [3, 7]
# 定义集合
A = set("12345")
B = set("123")
print("集合AB的并为:",A | B)
print("集合AB的交为:",A & B)
print("集合AB的差为:",A - B)
集合AB的并为: {'4', '2', '1', '5', '3'}
集合AB的交为: {'1', '3', '2'}
集合AB的差为: {'4', '5'}
# 自变量趋近无穷
n = Symbol("n")
s = n**2/(n**2+1)
result = limit(s,n,oo)
print("数列极限为:",result)
数列极限为: 1
# 自变量趋近有限值
x = Symbol("x")
s = (2-5*x**2)/(2*x+1)
print("函数极限为:",limit(s,x,-1/2))
函数极限为: oo
# 自变量趋近无穷大
x = Symbol("x")
s = (x+x**3)/(6*x**3)
print("函数极限为:",limit(s,x,oo))
函数极限为: 1/6

2 求导与微分

# 导入sympy库
from sympy import *
# 常数导数
x = Symbol("x")
C = 2
y = C
diff(y,x)

0 \displaystyle 0 0

# 幂函数导数
x = Symbol("x")
mu = Symbol("mu")
y = x**mu
diff(y,x)

μ x μ x \displaystyle \frac{\mu x^{\mu}}{x} xμxμ

# 指数函数求导
a = Symbol("a")
x = Symbol("x")
y = a**x
diff(y,x)

a x log ⁡ ( a ) \displaystyle a^{x} \log{\left(a \right)} axlog(a)

# 对数函数求导
a = Symbol("a")
x = Symbol("x")
y = log(x,a)
diff(y,x)

1 x log ⁡ ( a ) \displaystyle \frac{1}{x \log{\left(a \right)}} xlog(a)1

# 正弦求导
x = Symbol("x")
y = sin(x)
diff(y,x)

cos ⁡ ( x ) \displaystyle \cos{\left(x \right)} cos(x)

# 反正弦函数求导
x = Symbol("x")
y = asin(x)
diff(y,x)

1 1 − x 2 \displaystyle \frac{1}{\sqrt{1 - x^{2}}} 1x2 1

# 求导四则运算
x = Symbol("x")
u = log(x,a)
v = x**2+1
y = u+v
diff(y,x)

2 x + 1 x log ⁡ ( a ) \displaystyle 2 x + \frac{1}{x \log{\left(a \right)}} 2x+xlog(a)1

y = u - v
diff(y,x)

− 2 x + 1 x log ⁡ ( a ) \displaystyle - 2 x + \frac{1}{x \log{\left(a \right)}} 2x+xlog(a)1

y = u*v
diff(y,x)

2 x log ⁡ ( x ) log ⁡ ( a ) + x 2 + 1 x log ⁡ ( a ) \displaystyle \frac{2 x \log{\left(x \right)}}{\log{\left(a \right)}} + \frac{x^{2} + 1}{x \log{\left(a \right)}} log(a)2xlog(x)+xlog(a)x2+1

y = u/v
diff(y,x)

− 2 x log ⁡ ( x ) ( x 2 + 1 ) 2 log ⁡ ( a ) + 1 x ( x 2 + 1 ) log ⁡ ( a ) \displaystyle - \frac{2 x \log{\left(x \right)}}{\left(x^{2} + 1\right)^{2} \log{\left(a \right)}} + \frac{1}{x \left(x^{2} + 1\right) \log{\left(a \right)}} (x2+1)2log(a)2xlog(x)+x(x2+1)log(a)1

# 复合函数求导
x = Symbol("x")
u = Symbol("u")
u = x**2
y =sin(u)
diff(y,x)

2 x cos ⁡ ( x 2 ) \displaystyle 2 x \cos{\left(x^{2} \right)} 2xcos(x2)

# 链式求导
x = Symbol("x")
u = Symbol("u")
v = Symbol("v")
v = sin(x)**2
u = tan(v)**2
y = log(u)**2
diff(y,x)

8 ( tan ⁡ 2 ( sin ⁡ 2 ( x ) ) + 1 ) log ⁡ ( tan ⁡ 2 ( sin ⁡ 2 ( x ) ) ) sin ⁡ ( x ) cos ⁡ ( x ) tan ⁡ ( sin ⁡ 2 ( x ) ) \displaystyle \frac{8 \left(\tan^{2}{\left(\sin^{2}{\left(x \right)} \right)} + 1\right) \log{\left(\tan^{2}{\left(\sin^{2}{\left(x \right)} \right)} \right)} \sin{\left(x \right)} \cos{\left(x \right)}}{\tan{\left(\sin^{2}{\left(x \right)} \right)}} tan(sin2(x))8(tan2(sin2(x))+1)log(tan2(sin2(x)))sin(x)cos(x)

# 二阶求导
diff(y,x,2)

( tan ⁡ 2 ( sin ⁡ ( x ) ) + 1 ) ( − ( tan ⁡ 2 ( sin ⁡ ( x ) ) + 1 ) cos ⁡ 2 ( x ) tan ⁡ 2 ( sin ⁡ ( x ) ) − sin ⁡ ( x ) tan ⁡ ( sin ⁡ ( x ) ) + 2 cos ⁡ 2 ( x ) ) \displaystyle \left(\tan^{2}{\left(\sin{\left(x \right)} \right)} + 1\right) \left(- \frac{\left(\tan^{2}{\left(\sin{\left(x \right)} \right)} + 1\right) \cos^{2}{\left(x \right)}}{\tan^{2}{\left(\sin{\left(x \right)} \right)}} - \frac{\sin{\left(x \right)}}{\tan{\left(\sin{\left(x \right)} \right)}} + 2 \cos^{2}{\left(x \right)}\right) (tan2(sin(x))+1)(tan2(sin(x))(tan2(sin(x))+1)cos2(x)tan(sin(x))sin(x)+2cos2(x))

# 计算函数拐点
from sympy import *
x = Symbol("x")
y = 2*x**3-12*x**2+18*x-2
# 一阶导数
df1 = diff(y,x)
df1

6 x 2 − 24 x + 18 \displaystyle 6 x^{2} - 24 x + 18 6x224x+18

# 二阶导数
df2 = diff(y,x,2)
df2

12 ( x − 2 ) \displaystyle 12 \left(x - 2\right) 12(x2)

print("二阶导数取值为0的点为",solve(df2))
print("拐点值为",y.subs(x,2))
二阶导数取值为0的点为 [2]
拐点值为 2
# 第一充分条件求极值点
from sympy import *
x = Symbol("x")
y = (x+3)**2*(x-1)**3
df = diff(y,x)
print("函数驻点为:",solve(df,x))
函数驻点为: [-3, -7/5, 1]
print("函数极值为",y.subs(x,-3),y.subs(x,-7/5),y.subs(x,1))
函数极值为 0 -35.3894400000000 0
# 第二充分条件求极值点
from sympy import *
y = 2*x**3-6*x**2+7
df = diff(y,x)
print("函数极值点为",solve(df,x))
函数极值点为 [0, 2]
df2 = diff(y,x,2)
print("二阶导数驻点的值为:",df2.subs(x,0),df2.subs(x,2))
二阶导数驻点的值为: -12 12
print("函数的极值为",y.subs(x,0),y.subs(x,2))
函数的极值为 7 -1

3 不定积分

x = Symbol("x")
f = cos(x)
integrate(f,x)

sin ⁡ ( x ) \displaystyle \sin{\left(x \right)} sin(x)

x = Symbol("x")
f = 1/(1+x**2)
integrate(f,x)

atan ⁡ ( x ) \displaystyle \operatorname{atan}{\left(x \right)} atan(x)

x = Symbol("x")
f = exp(x)*sin(x)
integrate(f,x)

e x sin ⁡ ( x ) 2 − e x cos ⁡ ( x ) 2 \displaystyle \frac{e^{x} \sin{\left(x \right)}}{2} - \frac{e^{x} \cos{\left(x \right)}}{2} 2exsin(x)2excos(x)

4 定积分

x = Symbol("x")
a = Symbol("a")
b = Symbol("b")
y = sin(a*x)*cos(b*x)
integrate(y,(x,a,b))

{ 0 for ( a = 0 ∧ b = 0 ) ∨ ( a = 0 ∧ a = b ∧ b = 0 ) ∨ ( a = 0 ∧ a = − b ∧ b = 0 ) ∨ ( a = 0 ∧ a = − b ∧ a = b ∧ b = 0 ) cos ⁡ 2 ( b 2 ) 2 b − cos ⁡ 2 ( a b ) 2 b for ( a = 0 ∧ a = − b ) ∨ ( a = − b ∧ a = b ) ∨ ( a = − b ∧ b = 0 ) ∨ ( a = 0 ∧ a = − b ∧ a = b ) ∨ ( a = − b ∧ a = b ∧ b = 0 ) ∨ a = − b − cos ⁡ 2 ( b 2 ) 2 b + cos ⁡ 2 ( a b ) 2 b for ( a = 0 ∧ a = b ) ∨ ( a = b ∧ b = 0 ) ∨ a = b a cos ⁡ ( a 2 ) cos ⁡ ( a b ) a 2 − b 2 − a cos ⁡ ( b 2 ) cos ⁡ ( a b ) a 2 − b 2 + b sin ⁡ ( a 2 ) sin ⁡ ( a b ) a 2 − b 2 − b sin ⁡ ( b 2 ) sin ⁡ ( a b ) a 2 − b 2 otherwise \displaystyle \begin{cases} 0 & \text{for}\: \left(a = 0 \wedge b = 0\right) \vee \left(a = 0 \wedge a = b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - b \wedge a = b \wedge b = 0\right) \\\frac{\cos^{2}{\left(b^{2} \right)}}{2 b} - \frac{\cos^{2}{\left(a b \right)}}{2 b} & \text{for}\: \left(a = 0 \wedge a = - b\right) \vee \left(a = - b \wedge a = b\right) \vee \left(a = - b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - b \wedge a = b\right) \vee \left(a = - b \wedge a = b \wedge b = 0\right) \vee a = - b \\- \frac{\cos^{2}{\left(b^{2} \right)}}{2 b} + \frac{\cos^{2}{\left(a b \right)}}{2 b} & \text{for}\: \left(a = 0 \wedge a = b\right) \vee \left(a = b \wedge b = 0\right) \vee a = b \\\frac{a \cos{\left(a^{2} \right)} \cos{\left(a b \right)}}{a^{2} - b^{2}} - \frac{a \cos{\left(b^{2} \right)} \cos{\left(a b \right)}}{a^{2} - b^{2}} + \frac{b \sin{\left(a^{2} \right)} \sin{\left(a b \right)}}{a^{2} - b^{2}} - \frac{b \sin{\left(b^{2} \right)} \sin{\left(a b \right)}}{a^{2} - b^{2}} & \text{otherwise} \end{cases} 02bcos2(b2)2bcos2(ab)2bcos2(b2)+2bcos2(ab)a2b2acos(a2)cos(ab)a2b2acos(b2)cos(ab)+a2b2bsin(a2)sin(ab)a2b2bsin(b2)sin(ab)for(a=0b=0)(a=0a=bb=0)(a=0a=bb=0)(a=0a=ba=bb=0)for(a=0a=b)(a=ba=b)(a=bb=0)(a=0a=ba=b)(a=ba=bb=0)a=bfor(a=0a=b)(a=bb=0)a=botherwise

x = Symbol("x")
f = sin(x)
integrate(f,(x,0,pi))

2 \displaystyle 2 2


-END-
http://www.15wanjia.com/news/156705.html

相关文章:

  • 重庆网站建站wordpress导入媒体失败
  • 网站开发都做什么网站建设基本内容
  • 网站发帖做业务网站开发朋友圈
  • 《网站建设》期末考试编程培训
  • 在eclipse中做网站开发有那些做自媒体短视频的网站
  • 青之峰网站建设类似猪八戒的网站建设
  • 软件定制开发系统商城网站建设优化推广
  • 做公司网站需要注意哪些中国铁建华南建设有限公司网站
  • 如何做网站数据库南阳网站推广公司
  • 企业的建站方式wordpress访问慢
  • 蜜雪冰城网站建设策划方案上海建设工程有限公司
  • 太原cms建站北京网站建设dqcx
  • 投票网站建设临时工找工作网站做美缝
  • 郴州新网招聘网最新招聘信息快速优化排名公司推荐
  • 河北石家庄建设网站兰州装修公司
  • 公司网站应该怎么做抖音推广怎么收费
  • 怎么查网站开发的语言数商云医药
  • 网站建设营销策划方案网站开发设计注册
  • 成都营销型网站建设公司wordpress下载主题错误
  • 自己制作网站的方法是爱做网站外国
  • 手机商城网站如何wordpress缩略图设置
  • 浙江省建设厅网站网站建设如何描述
  • 做php网站教程视频教程高校招生网站建设
  • 济南app网站建设网站基本建设投资内容
  • 贵州建设厅培训中心网站汕头网络推广团队
  • 免费简历在线制作网站WordPress做分类信息
  • 网站去哪里备案网站制作与网页制作
  • 我想自己建个网站买货 怎么做读书网站建设策划书
  • 会员管理网站建设保定最大的网络公司
  • 建官方网站的公司网站建设要哪些人