当前位置: 首页 > news >正文

做救助流浪动物网站的产生背景百度竞价广告怎么收费

做救助流浪动物网站的产生背景,百度竞价广告怎么收费,app开发公司被骗报警,双语网站建设报价基于Faster R-CNN的安全帽目标检测项目通常旨在解决工作场所,特别是建筑工地的安全监管问题。这类项目使用计算机视觉技术,特别是深度学习中的Faster R-CNN算法,来自动检测工人是否正确佩戴了安全帽,从而确保遵守安全规定并减少事…

基于Faster R-CNN的安全帽目标检测项目通常旨在解决工作场所,特别是建筑工地的安全监管问题。这类项目使用计算机视觉技术,特别是深度学习中的Faster R-CNN算法,来自动检测工人是否正确佩戴了安全帽,从而确保遵守安全规定并减少事故风险。

项目背景与目标: 在建筑、矿山和其他高风险作业环境中,安全帽是保护工人免受头部伤害的基本装备。然而,人工检查安全帽的佩戴情况效率低下且容易出错。因此,开发自动化检测系统可以提高工作效率和安全性。

技术细节:

  • 数据收集: 项目首先需要收集大量包含工人头像和安全帽的图像数据,这些数据可能来自于监控摄像头或专门拍摄的照片。
  • 数据标注: 对于每一张图片,需要手动标注安全帽的位置,这通常涉及划定边界框并标记类别(例如,有安全帽、无安全帽)。
  • 模型训练: 使用标注过的数据集来训练Faster R-CNN模型。Faster R-CNN是一个两阶段的目标检测模型,它包括一个区域提议网络(RPN)用于生成候选区域,以及一个用于分类和定位的后续网络。
  • 模型评估: 在测试集上评估模型的性能,调整超参数以优化准确性和召回率。
  • 部署: 将训练好的模型部署到实际环境中,如连接到现场的摄像头,实时分析视频流,识别未戴安全帽的人员。

应用与优势:

  • 实时监控:系统能够连续地分析视频流,及时发现未佩戴安全帽的情况。
  • 减少人力成本:自动化检测减少了对人工监督的需求,节省了人力资源。
  • 提高安全性:通过及时提醒未遵守安全规定的工人,降低潜在的事故风险。
  • 数据分析:收集的数据可用于进一步分析安全行为模式,帮助改善安全管理策略。

挑战与限制:

  • 光照条件变化:室外环境光照变化大,可能影响检测效果。
  • 遮挡问题:工人的姿势、其他物体或人群的遮挡会增加检测难度。
  • 计算资源:实时视频处理需要强大的计算能力,尤其是在边缘设备上。

总之,基于Faster R-CNN的安全帽目标检测项目是一个综合了数据科学、计算机视觉和深度学习技术的解决方案,旨在提高工作场所的安全性。

 

1. 🔥 训练模型前的准备

  • A.数据准备

数据的标注仍然采用VOC格式的数据标注形式,如果是其他的标注形式比如COCO请自行实现相关代码。将数据最终转化为如下形式:

    #  单行数据的结构: (path_filename, x1, y1, x2, y2, class_name)# Note:#   一个path_filename 可能对应多个类别(class_name),每个类别占用一行数据#   x1, y1, x2, y2 是原图像的坐标, 而不是ratio后图像上的坐标#   (x1, y1) 标注框的左上坐标; (x2, y2) 标注框的右下坐标#   x1,y1-------------------#   |                       |#   |                       |#   |                       |#   |                       |#   ---------------------x2,y2

可以运行如下代码实现数据集的准备工作:

python3 ./data/data_pro.py

将在./data文件夹下生成annotation.txt文件,这样训练数据的准备工作即完成。

# path_filename, x1, y1, x2, y2, class_name
/home/myuser/xujing/Faster-R-CNN_hat/data/JPEGImages/000605.jpg,37,12,151,154,hat
/home/myuser/xujing/Faster-R-CNN_hat/data/JPEGImages/000605.jpg,243,1,393,176,hat
/home/myuser/xujing/Faster-R-CNN_hat/data/JPEGImages/PartB_02176.jpg,92,593,180,684,person
/home/myuser/xujing/Faster-R-CNN_hat/data/JPEGImages/PartB_02176.jpg,229,648,357,777,person
  • B.配置文件准备

根据自己的训练集和训练任务修改./keras_frcnn/config.py的配置文件,相关参数的解释和配置如下:

self.verbose = True  # 显示训练过程
self.network = 'vgg' # backbone 目前支持vgg(VGG16),resnet50,xception,inception_resnet_v2# 数据增强策略
self.use_horizontal_flips = False  # 水平随机裁剪
self.use_vertical_flips = False  # 垂直随机裁剪
self.rot_90 = False    # 随机90度旋转# Anchor Box的scale
# 根据具体的情况去修改,一般是图像或目标的大小做调整!!!!
# self.anchor_box_scales = [128,256,512]
self.anchor_box_scales = [4,8,16,64,128,256,512,1024]# Anchor Box的ratio
self.anchor_box_ratios = [[1, 1], [1, 2], [2, 1]]
# self.anchor_box_ratios = [[1, 1]]# 图像最小变填充后的尺寸
self.im_size = 600# 图像channel-wise上的mean和std,这个值是根据ImageNet数据集得到的
# 可以根据自己训练集调整
self.img_channel_mean = [103.939, 116.779, 123.68]
self.img_scaling_factor = 1.0# 一次得到的ROI的个数
self.num_rois = 32# RPN网络特征图的缩小倍数(VGG16的是16,其他网络请自行修改该参数)
# 换网络时 要换的!!!
self.rpn_stride = 16
# 训练时是否做类别blance
self.balanced_classes = False# Regression时的scaling the stdev
self.std_scaling = 4.0
self.classifier_regr_std = [8.0, 8.0, 4.0, 4.0]# 训练集制作过程中的正负样本的划分策略,详细才考faster R-CNN原论文
# overlaps for RPN
self.rpn_min_overlap = 0.3
self.rpn_max_overlap = 0.7# overlaps for classifier ROIs
self.classifier_min_overlap = 0.1
self.classifier_max_overlap = 0.5# class类别映射
self.class_mapping = None# base network的预训练模型的存放位置
# keras预训练模型可以在这里下载: https://github.com/fchollet/deep-learning-modelsself.model_path = './pre_train/vgg16_weights_tf_kernels_notop.h5'  # 我们使用VGG16

2. 🐎 训练模型

预训练模型:Shell下运行

python3 train_frcnn.py --path="./data/annotation.txt" --network="vgg" --input_weight_path="./pre_train/vgg16_weights_tf_kernels_notop.h5"

windows下直接运行我们写好的批处理文件:

run_train.bat

3. 🚀 模型推断

将需要测试的图像和视频拷贝到./new_test文件夹

  • A.单张图像推断

Shell下运行:

python3 test_frcnn.py --path="./new_test"

windows下直接运行我们写好的批处理文件:

run_inference.bat
  • B.视频推断

Shell下运行:

python3 test_frcnn_video.py --path="./new_test/test_video.mp4"

windows下直接运行我们写好的批处理文件:

test_video.bat

4. 🎉 DEMO

 

http://www.15wanjia.com/news/13995.html

相关文章:

  • 做网站时 404网页如何指向成品视频直播软件推荐哪个好一点
  • 手机网站模板图片最近几天的新闻大事
  • 做门户网站需要什么条件流量神器
  • 吉林省住房建设厅网站国际局势最新消息今天
  • 企业官方网站的作用注册网址
  • 整形网站源码宁波关键词优化企业网站建设
  • 下班后做兼职任务网站aso安卓优化公司
  • 简单描述网站建设流程seo专业优化公司
  • 评价一个网站新人做外贸怎么找国外客户
  • 自己搭建云平台seo搜索优化邵阳
  • 用vs做网站表格向上居中知乎seo排名的搜软件
  • 大德通众包 做网站怎么样百度推广外推联系方式
  • 做网站的电脑自带软件是什么互联网企业营销策略
  • 做pcr查基因序列的网站seo排名快速
  • 企业网站信息化建设深圳白帽优化
  • 龙口做网站案例百度导航是哪个国家的
  • 博士后是否可以做网站负责人线上运营推广
  • 饰品做商城网站模式抖音seo推荐算法
  • 口碑好的高密网站建设seo排名优化培训
  • 微信公众平台官方网站登录电商软文范例300字
  • 常见的旅游网络营销方式宁波seo教程app推广
  • 网站排名优化工具网站软文是什么
  • dede网站入侵教程网络营销好找工作吗
  • 泰安网站建设课程报告上海网站seo
  • wordpress导航菜单下拉seo优化实训总结
  • 深圳做app网站制作seo怎样才能优化网站
  • 行业公司网站建设在什么网站可以免费
  • 大团企业网站制作推广方案怎么写模板
  • 在线建站网站成都官网seo费用
  • 做服饰的有哪些网站长沙优化科技有限公司