当前位置: 首页 > news >正文

锋云科技网站建设友情链接有什么用

锋云科技网站建设,友情链接有什么用,phpcms二级栏目文章列表调用网站最新文章的方法,虎嗅wordpress文章目录前言质数相关质数判断求约数求取区间质数埃氏筛法线性筛法分解质因数欧拉欧拉函数求取单个数线性筛法求取欧拉定理求逆元快速幂/幂取模欧几里得算法求最小公约数拓展欧几里得算法求解同余方程前言 本文主要是提供Python版本的常见的一些与数论相关的模板,例…

文章目录

  • 前言
  • 质数相关
    • 质数判断
    • 求约数
    • 求取区间质数
      • 埃氏筛法
      • 线性筛法
    • 分解质因数
  • 欧拉
    • 欧拉函数
      • 求取单个数
      • 线性筛法求取
    • 欧拉定理
    • 求逆元
      • 快速幂/幂取模
  • 欧几里得算法
    • 求最小公约数
    • 拓展欧几里得算法
    • 求解同余方程

前言

本文主要是提供Python版本的常见的一些与数论相关的模板,例如求解质数,质因数分解,简单博弈论,以及组合型问题(经典的括号匹配组合问题)等等。至于原理与证明的话,由于存在大量的数学公式推理,因此本文不展示,仅展示代码与变量说明和使用场景。

注意: 相关原理将使用红色字体进行标注,证明可自行查阅资料。本文不再赘述!

质数相关

质数判断

朴素方式:

def isPrim(n):if(n==1):return Falsefor i in range(2,n):if(n%i==0);return Falsereturn True

之后的话,由于除法的一些性质,当 n/d = d 的时候,d^2 = n 在这个循环过程当中 d^2 <= n 这个时候的话,是没有必要全部除去的,只需要一般就好了。

优化版本:

def isPrime(n):if(n==1):return i = 2while(i<=(n//i)):if(n%i==0):return Falsereturn True

求约数

这个的话就是前面说的那句话的比较好的运用

def yueShu(n):i = 1while(i<=n//i):if(n%i==0):print(i)if(i!=n//i):print(n//i)i+=1

此外:
在这里插入图片描述

求取区间质数

现在我们知道了如何判断一个质数,那么现在我们需要求取一个区间内的质数,例如,我们需要求取,从1~n之间所有的质数有哪些?

埃氏筛法

直接看到代码:

def getPrims(n):prime = [0] * (n+1):st = [False] * (n+1)cnt = 0for i in range(2,n+1):if(not st[i]):prime[cnt] = icnt+=1j = i+iwhile(j<=n):st[j] = Truej+=i

这个的话,就是把这个质数的倍数给筛掉。

线性筛法

埃氏筛法的效率还是可以的,但是还可以优化一下。

def getPrim(n):prime = [0] * (n+1):st = [False] * (n+1)cnt = 0for i in range(2,n+1):if(not st[i]):prime[cnt] = icnt+=1j = 0while(prime[j] <=n//i):st[prime[j]*i] = Trueif(i%(prime[j])==0):breakj+=1

这个的话就是把那个筛选的给优化了一下。

分解质因数

ok,接下来是分解质因数,这个分解质因数是很有用的东西。

N = p1^a1 * p2*a2 …pk^ak
对于一个数N都可以拆解为这样的样子,其中这个P是质数

def division(n):i = 2while(i<=n/i):if(n%i==0):a = 0while(n%i==0):n//=ia+=1print("当前质因数为:{},对于的幂是{}".format(i,a))if(n>1):print("当前质因数为:{},对于的幂是{}".format(n,1))

欧拉

这个东西的话和我们的这个质数还是有点关系的。

欧拉函数

欧拉函数φ(5) 表示从1~5 当中和5 互质的元素个数有几个。

求取单个数

同样的和我们刚刚的这个质数是类似的,可以直接求取这个欧拉函数,也有求取一个区间的所有欧拉函数值。
在这里插入图片描述


def OuLa(n):res = ni = 2while(i<=(n//i)):if(n%i==0):while(n%i==0):n//=i#res = res* (1-(1/i)) 优化一下避免处于小数res = res // i *(i - 1)return res

线性筛法求取

这个的话就是求取这个1~n这个范围的所有的欧拉数

def ouLaLiner(n):prim = [0] * (n+1)st = [False] * (n+1)cnt = 0phi = [1] * (n+1) # φ(1) = 1for i in range(2,n+1):if(not st[i]):prim[cnt] = ii+=1phi[i] = phi[i-1]j = 0while(prim[j]<=n//i):st[prim[j]*i] = Trueif(i%prim[j]==0):phi[prim[j]*i] = phi[i] *(prim[j])breakphi[prim[j]*i] = phi[i] *(prim[j]-1)j+=1 

欧拉定理

那么接下来就是这个欧拉定理,这个欧拉定理的话,可以用在我们的求逆元的时候用上。

这个定理非常简单。
在这里插入图片描述

求逆元

在这里插入图片描述

那么这里的话,求解的时候的话,还需要一个求快速幂的算法

快速幂/幂取模

def KuaiSu(a,k):res = 1while(k):if(k%2==0):res*=aa*=ak//=2return res
def KuaiSu(a,k,p):res = 1while(k):if(k%2==0):res*=a % pa*=a % pk//=2return res

原理是这个:

(a + b) % p = (a % p + b % p) % p(1)

(a - b) % p = (a % p - b % p ) % p (2)

(a * b) % p = (a % p * b % p) % p .(3)

欧几里得算法

求最小公约数

这里的话主要是这个欧几里得算法,这个欧几里得算法的话作用还是非常大的,一个是求取最小公约数,然后的话就是用拓展欧几里得算法来求取这个同余方程(当然这块是先用裴蜀定理可以证明一下)

def gcd(a,b):if(b==0):return areturn (b,a%b)

拓展欧几里得算法

在这里插入图片描述
我们使用这个拓展欧几里得算法的话可以求出这个来。
我们先来直接看到代码:

globe x=0,y=0
def exgcd(a,b,x,y):if(b == 0):x = 1,y = 0return ad = exgcd(b, a % b, y, x);y -= (a//b) * x;return d

这里的话这个y 是这样的:
在这里插入图片描述

求解同余方程

那么这个拓展欧几里得算法的话就可以去求解同余方程以及我们刚刚的求逆元。

因为我们那个求逆元其实也就是解一个同余方程,只是那个方程比较特殊而已。

为什么可以怎么来的如下:
在这里插入图片描述
这里的话就不给代码了,上面有。然后求逆的话是这样的:
在这里插入图片描述

http://www.15wanjia.com/news/13057.html

相关文章:

  • b2b网站建设排名营销策略有哪些理论
  • 企业网站建设哪家效果好114黄页
  • 织梦 图片网站源码郑州网络推广公司
  • 短信轰炸网站开发seo还有用吗
  • 投资公司网站建设需求网络营销电子版教材
  • 物流网站制作百度竞价推广自己可以做吗
  • 中国证券登记结算有限公司官网aso搜索优化
  • 企业铭做网站电商培训内容有哪些
  • 最好的模板网站百度站长平台注册
  • 做网络歌手的网站seo发包技术教程
  • 如何做响应式布局网站网站查询ip地址
  • 做印刷去哪个网站找工作seo最新优化技术
  • 24小时看b站视频的软件有哪些广州推广系统
  • 在哪里买空间做网站自己建个网站要多少钱
  • 广告推广的方式有哪些seo研究中心
  • 如何用office做网站电脑培训学校哪家好
  • 网站建设与管理需要什么软件seo技术优化服务
  • 长沙php网站建设怎么在百度做广告
  • 做网站电商东莞网络科技公司排名
  • 论坛网站用的虚拟主机网络科技公司
  • wordpress主题有广告windows优化大师会员兑换码
  • 网站建设的话术百度投诉中心
  • 河北网站建设推广公司福州seo顾问
  • 网站开发实训新的体会网址关键词查询网站
  • 建设ca网站必应搜索引擎首页
  • jsp动态网站开发项目教程 ppt微信营销方式有哪些
  • 如何修改代码wordpress快速优化网站排名软件
  • 做网站和管理系统南宁网络推广软件
  • 北京网站建设哪家专业信阳seo公司
  • 海淀网站建设服务网站域名ip地址查询