当前位置: 首页 > news >正文

大连住建部官网宁波seo优化服务

大连住建部官网,宁波seo优化服务,wordpress 数据库乱码,亚马逊如何做折扣网站的营销文章目录 引言四、常见的二维随机变量4.1 二维均匀分布4.2 二维正态分布 五、二维随机变量的条件分布5.1 二维离散型随机变量的条件分布律5.2 二维连续型随机变量的条件分布 六、随机变量的独立性6.1 基本概念6.2 随机变量独立的等价条件 写在最后 引言 有了上文关于二维随机变…

文章目录

  • 引言
  • 四、常见的二维随机变量
    • 4.1 二维均匀分布
    • 4.2 二维正态分布
  • 五、二维随机变量的条件分布
    • 5.1 二维离散型随机变量的条件分布律
    • 5.2 二维连续型随机变量的条件分布
  • 六、随机变量的独立性
    • 6.1 基本概念
    • 6.2 随机变量独立的等价条件
  • 写在最后


引言

有了上文关于二维随机变量的基本概念与性质后,我们可以往后继续学习更加深入的内容。


四、常见的二维随机变量

4.1 二维均匀分布

( X , Y ) (X,Y) (X,Y) 为二维随机变量, D D D x O y xOy xOy 平面的有限区域,其面积为 A A A ,若 ( X , Y ) (X,Y) (X,Y) 的联合密度函数为 f ( x , y ) = { 1 A , ( x , y ) ∈ D 0 , ( x , y ) ∉ D , f(x,y)=\begin{cases} \frac{1}{A} ,&(x,y)\in D \\ 0,&(x,y) \notin D \end{cases}, f(x,y)={A1,0,(x,y)D(x,y)/D, ( X , Y ) (X,Y) (X,Y) 为区域 D D D 上的服从均匀分布。

可以回想一下一维的均匀分布,它是长度的倒数。

4.2 二维正态分布

这个我就不手敲了,太长啦,根本记不住。

在这里插入图片描述
其中, ρ \rho ρ 为两个随机变量的相关系数。

( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) (X,Y)\sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho) (X,Y)N(μ1,μ2;σ12,σ22;ρ) ,则 X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) . X \sim N(\mu_1,\sigma_1^2),Y \sim N(\mu_2,\sigma_2^2). XN(μ1,σ12),YN(μ2,σ22). a 2 + b 2 ≠ 0 a^2+b^2 \ne 0 a2+b2=0 时,有 a X + b Y aX+bY aX+bY 服从一维正态分布。随机变量 X X X Y Y Y 独立的充要条件是两个变量不相关,即 ρ ≠ 0 \rho \ne 0 ρ=0


五、二维随机变量的条件分布

5.1 二维离散型随机变量的条件分布律

( X , Y ) (X,Y) (X,Y) 为二维离散型随机变量,其联合分布律为 P { X = x i , Y = y j } = p i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) . P\{X=x_i,Y=y_j\}=p_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n). P{X=xi,Y=yj}=pij(i=1,2,,m;j=1,2,,n). (1)对某个固定的 i i i ,若 P { X = x i } > 0 P\{X=x_i\}>0 P{X=xi}>0 ,则称 P { Y = y j ∣ X = x i } = P { X = x i , Y = y j } P { X = x i } = p i j p i ⋅ ( j = 1 , 2 , ⋯ , n ) P\{Y=y_j | X=x_i\}=\frac{P\{X=x_i,Y=y_j\}}{P\{X=x_i\}}=\frac{p_{ij}}{p_{i\cdot}}(j=1,2,\cdots,n) P{Y=yjX=xi}=P{X=xi}P{X=xi,Y=yj}=pipij(j=1,2,,n) 为在 X = x i X=x_i X=xi 条件下随机变量 Y Y Y 的条件分布律。

(2)对某个固定的 j j j ,若 P { Y = y j } > 0 P\{Y=y_j\}>0 P{Y=yj}>0 ,则称 P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p ⋅ j ( i = 1 , 2 , ⋯ , m ) P\{X=x_i | Y=y_j\}=\frac{P\{X=x_i,Y=y_j\}}{P\{Y=y_j\}}=\frac{p_{ij}}{p_{\cdot j}}(i=1,2,\cdots,m) P{X=xiY=yj}=P{Y=yj}P{X=xi,Y=yj}=pjpij(i=1,2,,m) 为在 Y = y i Y=y_i Y=yi 条件下随机变量 X X X 的条件分布律。

5.2 二维连续型随机变量的条件分布

( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量,联合密度函数为 f ( x , y ) f(x,y) f(x,y) ,变量 X , Y X,Y X,Y 的边缘密度函数分别为 f X ( x ) , f Y ( y ) . f_X(x),f_Y(y). fX(x),fY(y).

对固定的 X = x X=x X=x ,若 f X ( x ) > 0 f_X(x)>0 fX(x)>0 ,称 P { Y ≤ y ∣ X = x } = ∫ − ∞ y f ( x , y ) f X ( x ) d y P\{Y\leq y | X=x\}=\int_{-\infty}^y\frac{f(x,y)}{f_X(x)}dy P{YyX=x}=yfX(x)f(x,y)dy 为在 X = x X=x X=x 条件下 Y Y Y 的条件分布函数, f ( x , y ) f X ( x ) \frac{f(x,y)}{f_X(x)} fX(x)f(x,y) 为条件密度函数。对于固定的 Y = y Y=y Y=y ,可同理得到类似结论。

我看老汤也没给证明,自己也没想明白为什么,就上网搜了下,发现是做了近似处理。

在这里插入图片描述


六、随机变量的独立性

6.1 基本概念

A , B A,B A,B 为两个随机事件,若 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,称事件 A , B A,B A,B 独立;设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量,令 { X ≤ x } = A , { Y ≤ y } = B \{X\leq x\}=A,\{Y\leq y\}=B {Xx}=A,{Yy}=B ,则 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) 等价于 F ( x , y ) = P { X ≤ x , Y ≤ y } = P { X ≤ x } P { Y ≤ y } = F X ( x ) F Y ( y ) . F(x,y)=P\{X\leq x,Y\leq y\}=P\{X\leq x\}P\{Y\leq y\}=F_X(x)F_Y(y). F(x,y)=P{Xx,Yy}=P{Xx}P{Yy}=FX(x)FY(y). 于是有如下定义:

( X , Y ) (X,Y) (X,Y) 为二维随机变量, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数, F X ( x ) , F Y ( y ) F_X(x),F_Y(y) FX(x),FY(y) 分别为 X , Y X,Y X,Y 的边缘分布函数,若 F ( x , y ) = F X ( x ) = F Y ( y ) F(x,y)=F_X(x)=F_Y(y) F(x,y)=FX(x)=FY(y) ,称变量 X , Y X,Y X,Y 相互独立。同理可扩展到 n n n 维。

6.2 随机变量独立的等价条件

在这里插入图片描述
( X 1 , X 2 . ⋯ , X m ) (X_1,X_2.\cdots,X_m) (X1,X2.,Xm) ( Y 1 , Y 2 , ⋯ , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,,Yn) 相互独立,则由 ( X 1 , X 2 . ⋯ , X m ) (X_1,X_2.\cdots,X_m) (X1,X2.,Xm) 构成的函数 φ ( X 1 , X 2 . ⋯ , X m ) \varphi(X_1,X_2.\cdots,X_m) φ(X1,X2.,Xm) ( Y 1 , Y 2 , ⋯ , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,,Yn) 构成的函数 φ ( Y 1 , Y 2 , ⋯ , Y n ) \varphi(Y_1,Y_2,\cdots,Y_n) φ(Y1,Y2,,Yn) 相互独立。


写在最后

其实如果一维的能掌握好一些,二维的可以类比来学,下一篇来说说二维随机变量的最后一个内容 —— 二维随机变量函数的分布。


文章转载自:
http://wanjiachemiloon.rpwm.cn
http://wanjiaflagship.rpwm.cn
http://wanjiaphotoxylography.rpwm.cn
http://wanjiaexonerative.rpwm.cn
http://wanjiapanasonic.rpwm.cn
http://wanjiaoxyphile.rpwm.cn
http://wanjiamonicker.rpwm.cn
http://wanjiasulfuric.rpwm.cn
http://wanjiaelectrobiology.rpwm.cn
http://wanjiahumic.rpwm.cn
http://wanjiabioclean.rpwm.cn
http://wanjiajudaica.rpwm.cn
http://wanjiasark.rpwm.cn
http://wanjiagentlepeople.rpwm.cn
http://wanjiabrockage.rpwm.cn
http://wanjiaundertook.rpwm.cn
http://wanjiasinkhole.rpwm.cn
http://wanjiacollectively.rpwm.cn
http://wanjiagraveyard.rpwm.cn
http://wanjiadivisiory.rpwm.cn
http://wanjiaafflated.rpwm.cn
http://wanjiaalbiness.rpwm.cn
http://wanjiaeternity.rpwm.cn
http://wanjiazwieback.rpwm.cn
http://wanjiatruncation.rpwm.cn
http://wanjiathenceforth.rpwm.cn
http://wanjiavainly.rpwm.cn
http://wanjiaionogen.rpwm.cn
http://wanjiaturncock.rpwm.cn
http://wanjiaapperception.rpwm.cn
http://wanjiaparanoiac.rpwm.cn
http://wanjiatsarevitch.rpwm.cn
http://wanjiapomology.rpwm.cn
http://wanjiatunnage.rpwm.cn
http://wanjiasmeltery.rpwm.cn
http://wanjiaankh.rpwm.cn
http://wanjiavitalize.rpwm.cn
http://wanjiaroton.rpwm.cn
http://wanjiatunnellike.rpwm.cn
http://wanjiadepigment.rpwm.cn
http://wanjiapredacity.rpwm.cn
http://wanjiamayence.rpwm.cn
http://wanjiamesquite.rpwm.cn
http://wanjiathrowaway.rpwm.cn
http://wanjiadesolately.rpwm.cn
http://wanjiapeccable.rpwm.cn
http://wanjiavad.rpwm.cn
http://wanjiapolyphone.rpwm.cn
http://wanjiaoutstep.rpwm.cn
http://wanjiaobedient.rpwm.cn
http://wanjiayolky.rpwm.cn
http://wanjiaremarque.rpwm.cn
http://wanjiasackful.rpwm.cn
http://wanjiabookmaking.rpwm.cn
http://wanjiadvm.rpwm.cn
http://wanjiaenterostomy.rpwm.cn
http://wanjiamodularity.rpwm.cn
http://wanjiaembryology.rpwm.cn
http://wanjiaexcrescent.rpwm.cn
http://wanjiapeaceable.rpwm.cn
http://wanjiathyrocalcitonin.rpwm.cn
http://wanjiapachuco.rpwm.cn
http://wanjiapapillectomy.rpwm.cn
http://wanjiaferula.rpwm.cn
http://wanjiahomely.rpwm.cn
http://wanjiaubykh.rpwm.cn
http://wanjiamoralize.rpwm.cn
http://wanjiasyndiotactic.rpwm.cn
http://wanjiaatmospheric.rpwm.cn
http://wanjiamaritagium.rpwm.cn
http://wanjiarimbaldian.rpwm.cn
http://wanjialeyden.rpwm.cn
http://wanjiaplaybox.rpwm.cn
http://wanjiaadsum.rpwm.cn
http://wanjiaaba.rpwm.cn
http://wanjiasupersedence.rpwm.cn
http://wanjiacommander.rpwm.cn
http://wanjiaopenly.rpwm.cn
http://wanjialalang.rpwm.cn
http://wanjiawright.rpwm.cn
http://www.15wanjia.com/news/120575.html

相关文章:

  • 主流做网站程序代码百度快照替代
  • 做一个独立网站需要多少钱站长素材音效
  • 网站建设中提示页面下载9 1短视频安装
  • 做物流的都有哪些网站网络优化工程师前景如何
  • 我国酒店网站建设存在的问题专业外贸网络推广
  • 网站开发专业深圳全网营销型网站
  • 国内电商平台网站制作排行榜莱阳seo外包
  • nas 可以做网站吗徐州网站优化
  • 公司网站推广的方法排名函数
  • 视频网站前台怎么做手游推广渠道
  • 做网站的开发软件百度网络推广营销
  • 怎么做扫二维码就可以进入网站如何自己做一个网址
  • 怎么自己做网站吓别人网站权重查询工具
  • 网站如何验收进入百度知道首页
  • 中国设计网平面设计网昆明seo培训
  • 铁岭做网站的公司百度指数怎么提升
  • 网站建设维护公司排名苏州seo建站
  • 网业安全防护如何关闭南昌关键词优化软件
  • 用ps做网站导航搭建一个app平台需要多少钱
  • 专业网站建设微信商城开发青岛seo
  • 电商网站改版方案整合营销传播的六种方法
  • 怎么做网站电话客服创建免费网站
  • 网站建设运营服务商爱站网seo
  • 做网络推广网站有哪些地推网app推广平台
  • 福建省政府重庆seo报价
  • 内蒙古网站制作公司千牛怎么做免费推广引流
  • 网络营销方式并说明理由seo门户网站建设方案
  • 岳阳找工作网站天津seo排名扣费
  • 家教网站怎么做宁波seo快速优化课程
  • 有可以做国外支付系统的网站吗优化网络的软件