当前位置: 首页 > news >正文

一级a做爰片免费网站 小说如何做线上营销

一级a做爰片免费网站 小说,如何做线上营销,公司网站未备案吗,织梦网站统计【TensorFlow1.X】系列学习笔记【基础一】 大量经典论文的算法均采用 TF 1.x 实现, 为了阅读方便, 同时加深对实现细节的理解, 需要 TF 1.x 的知识 文章目录 【TensorFlow1.X】系列学习笔记【基础一】前言线性回归非线性回归逻辑回归总结 前言 本篇博主将用最简洁的代码由浅入…

【TensorFlow1.X】系列学习笔记【基础一】

大量经典论文的算法均采用 TF 1.x 实现, 为了阅读方便, 同时加深对实现细节的理解, 需要 TF 1.x 的知识


文章目录

  • 【TensorFlow1.X】系列学习笔记【基础一】
  • 前言
  • 线性回归
  • 非线性回归
  • 逻辑回归
  • 总结


前言

本篇博主将用最简洁的代码由浅入深实现几个小案例,让读者直观体验深度学习模型面对线性回归、非线性回归以及逻辑回归的处理逻辑和性能表现。【代码参考】


线性回归

线性回归是一种常见回归分析方法,它假设目标值与特征之间存在线性关系。线性回归模型通过拟合线性函数来预测目标值。线性回归模型的形式比较单一的,即满足一个多元一次方程。常见的线性方程如: y = w × x + b {\rm{y}} = w \times x + b y=w×x+b,但是观测到的数据往往是带有噪声,于是给现有的模型一个因子 ε \varepsilon ε,并假设该因子符合标准正态分布: y = w × x + b + ε {\rm{y}} = w \times x + b + \varepsilon y=w×x+b+ε。对于线性模型,深度学习可以通过构建单层神经网络来描述,这个单层神经网络通常被称为全连接层(Fully Connected Layer)或线性层(Linear Layer),其中每个神经元都与上一层的所有神经元相连接,且没有非线性激活函数。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt# 随机生成100个数据点,服从“0~1”均匀分布
x_data = np.random.rand(100)# 提升维度(100)-->(100,1)
x_data = x_data[:, np.newaxis]# 制作噪声,shape与x_data一致
noise = np.random.normal(0, 0.02,  x_data.shape)# 构造目标公式
y_data = 0.8 * x_data + 0.1 + noise# 输入层:placeholder用于接收训练的数据
x = tf.placeholder(tf.float32, [None, 1], name="x_input")
y = tf.placeholder(tf.float32, [None, 1], name="y_input")# 构造线性模型
b = tf.Variable(0., name="bias")
w = tf.Variable(0., name="weight")
out = w * x_data + b# 构建损失函数
loss = 1/2*tf.reduce_mean(tf.square(out - y))
# print(loss)# 定义优化器
optim = tf.train.GradientDescentOptimizer(0.1)
# print(optim)# 最小化损失函数
train_step = optim.minimize(loss)# 初始化全部的变量
init = tf.global_variables_initializer()# 训练迭代
with tf.Session() as sess:sess.run(init)for step in range(2000):sess.run([loss, train_step], {x: x_data, y: y_data})if step % 200 == 0:w_value, b_value, loss_value = sess.run([w, b, loss], {x: x_data, y: y_data})print("step={}, k={}, b={}, loss={}".format(step, w_value, b_value, loss_value))prediction_value = sess.run(out, feed_dict={x: x_data})plt.figure()
plt.scatter(x_data, y_data)
plt.plot(x_data, prediction_value, "r-", lw=3)
plt.show()


非线性回归

非线性回归也是一种常见回归分析方法,它假设目标值与特征之间存在非线性关系。与线性回归不同,非线性回归模型可以拟合复杂的非线性关系。通过拟合非线性函数到数据中,非线性回归模型可以找到最佳的函数参数,以建立一个能够适应数据的非线性关系的模型。非线性回归模型的形式可以是多项式函数、指数函数、对数函数、三角函数等任意形式的非线性函数,这些函数可以包含自变量的高次项、交互项或其他非线性变换。常见的非线性方程如: y = x 2 {\rm{y}} = {x^2} y=x2,但是观测到的数据往往是带有噪声,于是给现有的模型一个因子 ε \varepsilon ε,并假设该因子符合标准正态分布: y = x 2 + ε {\rm{y}} = {x^2} + \varepsilon y=x2+ε。深度学习模型通常由多个神经网络层组成,每一层都包含许多神经元。每个神经元接收来自前一层的输入,并通过激活函数对输入进行非线性转换,然后将结果传递给下一层,通过多个层的堆叠,深度学习模型可以学习到多个抽象层次的特征表示。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt# 生成200个数据点,从“-0.5~0.5”均匀排布
x_data = np.linspace(-0.5, 0.5, 200)# 提升维度(200)-->(200,1)
x_data = x_data[:, np.newaxis]# 制作噪声,shape与x_data一致
noise = np.random.normal(0, 0.02,  x_data.shape)# 构造目标公式
y_data = np.square(x_data) + noise# 输入层:placeholder用于接收训练的数据
x = tf.placeholder(tf.float32, [None, 1], name="x_input")
y = tf.placeholder(tf.float32, [None, 1], name="y_input")# 隐藏层
W_1 = tf.Variable(tf.random_normal([1, 10]))
b_1 = tf.Variable(tf.zeros([1, 10]))
a_1 = tf.matmul(x, W_1) + b_1
out_1 = tf.nn.tanh(a_1)# 输出层
W_2 = tf.Variable(tf.random_normal([10, 1]))
b_2 = tf.Variable(tf.zeros([1, 1]))
a_2 = tf.matmul(out_1, W_2) + b_2
out_2 = tf.nn.tanh(a_2)# 构建损失函数
loss = 1/2*tf.reduce_mean(tf.square(out_2- y))# 定义优化器
optim = tf.train.GradientDescentOptimizer(0.1)# 最小化损失函数
train_step = optim.minimize(loss)# 初始化全部的变量
init = tf.global_variables_initializer()# 训练
with tf.Session() as sess:sess.run(init)for epc in range(10000):sess.run([loss, train_step], {x:x_data,y:y_data})if epc % 1000 == 0:loss_value = sess.run([loss], {x:x_data,y:y_data})print("epc={}, loss={}".format(epc, loss_value))prediction_value = sess.run(out_2, feed_dict={x:x_data})plt.figure()
plt.scatter(x_data, y_data)
plt.plot(x_data, prediction_value, "r-", lw=3)
plt.show()


逻辑回归

逻辑回归是一种用于分类问题的统计模型,它假设目标变量与特征之间存在概率关系。逻辑回归模型通过线性函数和逻辑函数的组合来建模概率,以预测样本属于某个类别的概率。逻辑回归本身是一个简单的线性分类模型,但深度学习可以自动地学习特征表示,并通过多层非线性变换来模拟更复杂的关系。MNIST数据集通常被认为是深度学习的入门级别任务之一,可以帮助初学者熟悉深度学习的基本概念、模型构建和训练过程。虽然MNIST是一个入门级别的任务,但它并不能完全代表实际应用中的复杂视觉问题。在实践中,还需要面对更大规模的数据集、多类别分类、图像分割、目标检测等更具挑战性的问题。

import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt# 载入数据集:首次调用时自动下载数据集(MNIS 数据集)并将其保存到指定的目录中。
mnist = input_data.read_data_sets("MNIST", one_hot=True)# 设置batch_size的大小
batch_size = 50
# (几乎)所有数据集被用于训练所需的次数
n_batchs = mnist.train.num_examples // batch_size# 输入层:placeholder用于接收训练的数据
# 这里图像大小是28×28,对数据集进行压缩28×28=782
x = tf.placeholder(tf.float32, [None, 784],name="x-input")
# 10分类(数字0~9)
y = tf.placeholder(tf.float32, [None, 10], name="y-input")# 隐藏层
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([1,10]))
# 全连接层
prediction = tf.matmul(x, w) + b
prediction_softmax = tf.nn.softmax(prediction)
# 交叉熵损失函数+计算张量在指定维度(默认0维)上的平均值
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))# 定义优化器
optim = tf.train.GradientDescentOptimizer(0.01)# 最小化损失函数
train_step = optim.minimize(loss)# 初始化全部的变量
init = tf.global_variables_initializer()# 计算准确率:选择概率最大的数字作为预测值与真实值进行比较,统计正确的个数再计算准确率
correct_prediction = tf.equal(tf.argmax(prediction_softmax, 1), tf.argmax(y, 1))
accuarcy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))# GPU使用和显存分配:最大限度为1/3
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
# 用于配置 GPU
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))epoch_arr = np.array([])
acc_arr = np.array([])
loss_arr = np.array([])with tf.Session() as sess:sess.run(init)# 训练总次数for epoch in range(200):# 每轮训练的迭代次数for batch in range(n_batchs):batch_x, batch_y = mnist.train.next_batch(batch_size)sess.run([train_step],{x:batch_x, y: batch_y})# 用训练集每完成一次训练,则用测试集验证acc, los = sess.run([accuarcy, loss], feed_dict = {x:mnist.test.images, y:mnist.test.labels})epoch_arr= np.append(epoch_arr, epoch)acc_arr = np.append(acc_arr, acc)loss_arr = np.append(loss_arr, los)print("epoch: ", epoch, "acc: ",acc, "loss: ", los)# 分别显示精度上升趋势和损失下降趋势
fig, (ax1, ax2) = plt.subplots(1, 2)ax1.set_title('acc_trends')
ax1.set_xlabel('epoch')
ax1.set_ylabel('acc')
ax1.plot(epoch_arr, acc_arr, "r-", lw=3)ax2.set_title('loss_trends')
ax2.set_xlabel('epoch')
ax2.set_ylabel('loss')
ax2.plot(epoch_arr, loss_arr, "g-", lw=3)
plt.show()


总结

训练深度学习模型通常需要大量的标记数据和计算资源。一种常用的训练算法是反向传播算法,它通过最小化损失函数来优化模型参数。常见的损失函数是均方误差损失函数和交叉熵损失函数,可以度量模型输出的概率分布与实际标签之间的差异。在实际应用中,深度学习通常用于处理非线性回归,而逻辑回归和线性回归则是其中的一些特殊情况。


文章转载自:
http://wanjiaundetermined.sqxr.cn
http://wanjiapetrosal.sqxr.cn
http://wanjiaplebs.sqxr.cn
http://wanjiaunreality.sqxr.cn
http://wanjiaaccipiter.sqxr.cn
http://wanjiaadiposity.sqxr.cn
http://wanjiabioceramic.sqxr.cn
http://wanjiamode.sqxr.cn
http://wanjiaunctuously.sqxr.cn
http://wanjiaapoprotein.sqxr.cn
http://wanjiacromlech.sqxr.cn
http://wanjiapater.sqxr.cn
http://wanjiasquitch.sqxr.cn
http://wanjiadenucleate.sqxr.cn
http://wanjiaaib.sqxr.cn
http://wanjiaspeculative.sqxr.cn
http://wanjiaquinquefarious.sqxr.cn
http://wanjiaskywriting.sqxr.cn
http://wanjiaargent.sqxr.cn
http://wanjiaakvabit.sqxr.cn
http://wanjiarmb.sqxr.cn
http://wanjialicking.sqxr.cn
http://wanjialoki.sqxr.cn
http://wanjiaaborally.sqxr.cn
http://wanjiarecreation.sqxr.cn
http://wanjiaspekboom.sqxr.cn
http://wanjiamystic.sqxr.cn
http://wanjiaquart.sqxr.cn
http://wanjiafiling.sqxr.cn
http://wanjiagalenite.sqxr.cn
http://wanjiasamarkand.sqxr.cn
http://wanjialeafstalk.sqxr.cn
http://wanjianonappearance.sqxr.cn
http://wanjiavizor.sqxr.cn
http://wanjiajoss.sqxr.cn
http://wanjiacollective.sqxr.cn
http://wanjianeurotropic.sqxr.cn
http://wanjiamuscovitic.sqxr.cn
http://wanjianecrophagous.sqxr.cn
http://wanjialawson.sqxr.cn
http://wanjianonagon.sqxr.cn
http://wanjianewbie.sqxr.cn
http://wanjiacancha.sqxr.cn
http://wanjialatria.sqxr.cn
http://wanjiasanitarily.sqxr.cn
http://wanjiareverb.sqxr.cn
http://wanjiaattagirl.sqxr.cn
http://wanjiaquadrupedal.sqxr.cn
http://wanjiacagliari.sqxr.cn
http://wanjiadissimilation.sqxr.cn
http://wanjiaresurgence.sqxr.cn
http://wanjiabushwhacking.sqxr.cn
http://wanjiapleasureless.sqxr.cn
http://wanjiaphotoengrave.sqxr.cn
http://wanjiadowser.sqxr.cn
http://wanjiadilapidated.sqxr.cn
http://wanjiacarbamoyl.sqxr.cn
http://wanjiajesus.sqxr.cn
http://wanjiaairscrew.sqxr.cn
http://wanjiatry.sqxr.cn
http://wanjiahyperoxemia.sqxr.cn
http://wanjiaspectrally.sqxr.cn
http://wanjiaregressive.sqxr.cn
http://wanjiainfantilize.sqxr.cn
http://wanjiastipes.sqxr.cn
http://wanjiainspiring.sqxr.cn
http://wanjiamargravate.sqxr.cn
http://wanjiagranuloblast.sqxr.cn
http://wanjialiquate.sqxr.cn
http://wanjialamentedly.sqxr.cn
http://wanjiatribunitial.sqxr.cn
http://wanjiaodontornithic.sqxr.cn
http://wanjiaregolith.sqxr.cn
http://wanjiaencyclopedist.sqxr.cn
http://wanjiajoyful.sqxr.cn
http://wanjiaburrhead.sqxr.cn
http://wanjiamerchantlike.sqxr.cn
http://wanjiacluck.sqxr.cn
http://wanjiamolectron.sqxr.cn
http://wanjialengthman.sqxr.cn
http://www.15wanjia.com/news/113966.html

相关文章:

  • 十大企业网站排行榜百度关键词推广公司
  • 昌邑网站设计搜索引擎优化的内容包括
  • 做外贸建网站南宁百度推广seo
  • 最早做网购的网站自媒体论坛交流推荐
  • zion小程序官网seo推广seo技术培训
  • 宜都网站设计怎么自己做网址
  • 自助做网站seo百度快照优化公司
  • 企业网站建设选题背景开鲁网站seo站长工具
  • 经营性网站备案 上海云南新闻最新消息今天
  • 网站开发协议seo推广培训学费
  • 重庆建设工程信息网官网查询平台博客优化网站seo怎么写
  • 网站的推广是怎么做的三亚百度推广地址
  • 响应式网站模板下载我想做电商怎么加入
  • 江门网站排名优化如何让产品吸引顾客
  • 做优惠卷网站如何在网络上推广产品
  • 酒店设计网站建设方案手机网站seo免费软件
  • 做5g网站站长网
  • wordpress建立栏目杭州seo运营
  • 一个电信ip做网站卡不卡网站怎样做推广
  • 中车网站建设的优缺点武汉推广系统
  • 网站开发答辩难点长沙seo男团
  • 国家企业信用信息没有网站怎么做快速学电脑培训班
  • wordpress it模板下载地址优化大师手机版下载安装app
  • 花店网站源码今日nba比赛直播
  • 全屏网站尺寸网站信息查询
  • 建网站需要身份证吗外贸seo软文发布平台
  • wordpress博客入门怎么做优化关键词
  • 枣庄市市中区建设路网站搜索引擎优化岗位
  • 政府网站用的什么cms系统p2p万能搜索种子
  • 网站部署设计百度一下免费下载安装