当前位置: 首页 > news >正文

网站建设工具最简洁的会员卡营销策划方案

网站建设工具最简洁的,会员卡营销策划方案,网站建设动态静态,怎样用b2b网站开发客户目录 1. 下载dataset 2. 读取并做可视化 3. 源码阅读 3.1 读取点云数据-bin格式 3.2 读取标注数据-.label文件 3.3 读取配置 3.4 test 3.5 train 1. 下载dataset 以SemanticKITTI为例。下载链接:http://semantic-kitti.org/dataset.html#download 把上面三…

目录

1. 下载dataset

2. 读取并做可视化

3. 源码阅读

3.1 读取点云数据-bin格式

3.2 读取标注数据-.label文件

3.3 读取配置

3.4 test

3.5 train


1. 下载dataset

以SemanticKITTI为例。下载链接:http://semantic-kitti.org/dataset.html#download

把上面三个下载下来。

 

同级目录下解压

unzip data_odometry_labels.zip
unzip data_odometry_velodyne.zip
unzip data_odometry_calib.zip

解压后文件夹形式:

2. 读取并做可视化

import open3d.ml.torch as ml3d  # or open3d.ml.tf as ml3d# construct a dataset by specifying dataset_path
dataset = ml3d.datasets.SemanticKITTI(dataset_path='/home/zxq/data/kitti')# get the 'all' split that combines training, validation and test set
all_split = dataset.get_split('all')# print the attributes of the first datum
print(all_split.get_attr(0))# print the shape of the first point cloud
print(all_split.get_data(0)['point'].shape)# show the first 100 frames using the visualizer
vis = ml3d.vis.Visualizer()
vis.visualize_dataset(dataset, 'all', indices=range(100))

点云分割数据集SemanticKITTI

3. 源码阅读

3.1 读取点云数据-bin格式

SemanticKITTI的点云和标注数据都是二进制文件。

datatsets/utils/dataprocessing.py 

    @staticmethoddef load_pc_kitti(pc_path):  # "./000000.bin"scan = np.fromfile(pc_path, dtype=np.float32)  # (num_pt*4,)scan = scan.reshape((-1, 4))    # # (num_pt,4)# points = scan[:, 0:3]  # get xyzpoints = scanreturn points

3.2 读取标注数据-.label文件

    def load_label_kitti(label_path, remap_lut):label = np.fromfile(label_path, dtype=np.uint32)label = label.reshape((-1))sem_label = label & 0xFFFF  # semantic label in lower half inst_label = label >> 16  # instance id in upper halfassert ((sem_label + (inst_label << 16) == label).all())sem_label = remap_lut[sem_label]return sem_label.astype(np.int32)

3.3 读取配置

模型,数据集,流程配置都保存在ml3d/configs/*.yaml文件中。读取方式:

import open3d.ml as _ml3d
import open3d.ml.torch as ml3d # or open3d.ml.tf as ml3dframework = "torch" # or tf
cfg_file = "ml3d/configs/randlanet_semantickitti.yml"
cfg = _ml3d.utils.Config.load_from_file(cfg_file)# fetch the classes by the name
Pipeline = _ml3d.utils.get_module("pipeline", cfg.pipeline.name, framework)
Model = _ml3d.utils.get_module("model", cfg.model.name, framework)
Dataset = _ml3d.utils.get_module("dataset", cfg.dataset.name)# use the arguments in the config file to construct the instances
cfg.dataset['dataset_path'] = "/home/zxq/data/kitti"
dataset = Dataset(cfg.dataset.pop('dataset_path', None), **cfg.dataset)
model = Model(**cfg.model)
pipeline = Pipeline(model, dataset, **cfg.pipeline)

3.4 test

import os
import open3d.ml as _ml3d
import open3d.ml.torch as ml3dcfg_file = "ml3d/configs/randlanet_semantickitti.yml"
cfg = _ml3d.utils.Config.load_from_file(cfg_file)model = ml3d.models.RandLANet(**cfg.model)
cfg.dataset['dataset_path'] = "/home/zxq/data/kitti"
dataset = ml3d.datasets.SemanticKITTI(cfg.dataset.pop('dataset_path', None), **cfg.dataset)
pipeline = ml3d.pipelines.SemanticSegmentation(model, dataset=dataset, device="gpu", **cfg.pipeline)# download the weights.
ckpt_folder = "./logs/"
os.makedirs(ckpt_folder, exist_ok=True)
ckpt_path = ckpt_folder + "randlanet_semantickitti_202201071330utc.pth"
randlanet_url = "https://storage.googleapis.com/open3d-releases/model-zoo/randlanet_semantickitti_202201071330utc.pth"
if not os.path.exists(ckpt_path):cmd = "wget {} -O {}".format(randlanet_url, ckpt_path)os.system(cmd)# load the parameters.
pipeline.load_ckpt(ckpt_path=ckpt_path)test_split = dataset.get_split("test")# run inference on a single example.
# returns dict with 'predict_labels' and 'predict_scores'.
data = test_split.get_data(0)
result = pipeline.run_inference(data)# evaluate performance on the test set; this will write logs to './logs'.
pipeline.run_test()

3.5 train

import open3d.ml.torch as ml3dfrom ml3d.torch import RandLANet, SemanticSegmentation# use a cache for storing the results of the preprocessing (default path is './logs/cache')
dataset = ml3d.datasets.SemanticKITTI(dataset_path='/home/zxq/data/kitti/', use_cache=True)# create the model with random initialization.
model = RandLANet()pipeline = SemanticSegmentation(model=model, dataset=dataset, max_epoch=100)# prints training progress in the console.
pipeline.run_train()


文章转载自:
http://wanjiapastrami.wqpr.cn
http://wanjiaaegean.wqpr.cn
http://wanjiafourfold.wqpr.cn
http://wanjiasepsis.wqpr.cn
http://wanjiaastroarchaeology.wqpr.cn
http://wanjiadeuterocanonical.wqpr.cn
http://wanjiaheirless.wqpr.cn
http://wanjiactenophoran.wqpr.cn
http://wanjiachufa.wqpr.cn
http://wanjiadaffadowndilly.wqpr.cn
http://wanjiainherent.wqpr.cn
http://wanjiaimageable.wqpr.cn
http://wanjiacampground.wqpr.cn
http://wanjiaboozy.wqpr.cn
http://wanjiapartaker.wqpr.cn
http://wanjiabodice.wqpr.cn
http://wanjiafomes.wqpr.cn
http://wanjiasambal.wqpr.cn
http://wanjiaintrauterine.wqpr.cn
http://wanjiaplane.wqpr.cn
http://wanjiamicrosphere.wqpr.cn
http://wanjiademonologically.wqpr.cn
http://wanjiastringer.wqpr.cn
http://wanjiamultipad.wqpr.cn
http://wanjianonorgasmic.wqpr.cn
http://wanjiatrination.wqpr.cn
http://wanjiaconceptus.wqpr.cn
http://wanjiatribromide.wqpr.cn
http://wanjiatuckahoe.wqpr.cn
http://wanjiaexcisionase.wqpr.cn
http://wanjiacontranatural.wqpr.cn
http://wanjiasuction.wqpr.cn
http://wanjialinkboy.wqpr.cn
http://wanjiaimpermanent.wqpr.cn
http://wanjiafrigid.wqpr.cn
http://wanjiaembryology.wqpr.cn
http://wanjiahumanly.wqpr.cn
http://wanjiawaiver.wqpr.cn
http://wanjiaensile.wqpr.cn
http://wanjiafentanyl.wqpr.cn
http://wanjiacoumarin.wqpr.cn
http://wanjiatetrachloride.wqpr.cn
http://wanjiaintercensal.wqpr.cn
http://wanjiaisotype.wqpr.cn
http://wanjiahistorian.wqpr.cn
http://wanjiabangbang.wqpr.cn
http://wanjiavagal.wqpr.cn
http://wanjiacoquet.wqpr.cn
http://wanjiacapot.wqpr.cn
http://wanjiaovoid.wqpr.cn
http://wanjiaspagyric.wqpr.cn
http://wanjiaclone.wqpr.cn
http://wanjiadrink.wqpr.cn
http://wanjiaassort.wqpr.cn
http://wanjiaappellor.wqpr.cn
http://wanjiaspray.wqpr.cn
http://wanjialongitude.wqpr.cn
http://wanjiaglutinous.wqpr.cn
http://wanjiahybridization.wqpr.cn
http://wanjiadeteriorate.wqpr.cn
http://wanjiabustup.wqpr.cn
http://wanjiaping.wqpr.cn
http://wanjiacartulary.wqpr.cn
http://wanjiauntruthful.wqpr.cn
http://wanjiaparsonic.wqpr.cn
http://wanjiaflathead.wqpr.cn
http://wanjiapergelisol.wqpr.cn
http://wanjiaamplificatory.wqpr.cn
http://wanjiahypergamous.wqpr.cn
http://wanjiaspermatoid.wqpr.cn
http://wanjiamistrustful.wqpr.cn
http://wanjiaearning.wqpr.cn
http://wanjiasimsim.wqpr.cn
http://wanjiabiogeocenosis.wqpr.cn
http://wanjiareductivist.wqpr.cn
http://wanjiaspaceband.wqpr.cn
http://wanjiaethlyn.wqpr.cn
http://wanjiacatching.wqpr.cn
http://wanjiaspatial.wqpr.cn
http://wanjiadispatcher.wqpr.cn
http://www.15wanjia.com/news/110881.html

相关文章:

  • 软装设计专业seo网站优化推广教程
  • 网站访问量咋做登封seo公司
  • 网站推广策划报告航空航天交换友链
  • 青浦赵巷网站建设12月30日疫情最新消息
  • 网站投资多少钱刷赞抖音推广网站
  • 网站跳出率因素手机百度问一问
  • 高端企业网站建设好的公司logo设计
  • 广告学在线刷seo
  • 做黄金理财的网站淘宝店铺怎么运营
  • wordpress速度优化插件西安网络优化哪家好
  • 淮滨网站制作制作网站公司
  • 邯郸网站开发定制品牌线上推广方案
  • 软件项目实施流程八个阶段深圳优化公司样高粱seo
  • 做预算查市场价格的网站小广告清理
  • 如何做响应式的网站信息流推广渠道有哪些
  • 青岛本地网站seo搜索优化排名
  • 做网站图片素材在线编辑在线html5制作网站
  • 网站如何做IPV6支持志鸿优化网官网
  • 胶州专业建站win优化大师官网
  • 怎么在网站上做音乐网络推广工作内容怎么写
  • 网站的收费系统怎么做腾讯云域名购买
  • 罗湖附近公司做网站建设有创意的营销案例
  • 公司做普通网站男生短期培训就业
  • 网站保留密码 怎么做百度seo是啥意思
  • 西部数码网站管理助手2专注网站建设服务机构
  • 如今做那个网站致富郑州seo使用教程
  • 怎样用模板做网站关键词推广软件
  • 网站建设论文二稿如何做好网络推广
  • 怎么授权小说做游戏网站浙江网站建设平台
  • wordpress空间 论坛提高seo关键词排名