当前位置: 首页 > news >正文

一个前端页面多少钱谷歌seo一个月费用需要2万吗

一个前端页面多少钱,谷歌seo一个月费用需要2万吗,北京在建项目查询,网页视频下载器安卓破解abstract 麦克劳林公式及其近似表示的应用误差估计和分析 Lagrange型泰勒公式的估计误差 由Lagrange型余项泰勒公式可知,多项式 p n ( x ) p_n(x) pn​(x)近似表达函数 f ( x ) f(x) f(x)时,其误差为 ∣ R n ( x ) ∣ |R_{n}(x)| ∣Rn​(x)∣ R n ( x ) R_{n}(x) Rn​(x) f …

abstract

  • 麦克劳林公式及其近似表示的应用
  • 误差估计和分析

Lagrange型泰勒公式的估计误差

  • 由Lagrange型余项泰勒公式可知,多项式 p n ( x ) p_n(x) pn(x)近似表达函数 f ( x ) f(x) f(x)时,其误差为 ∣ R n ( x ) ∣ |R_{n}(x)| Rn(x)
    • R n ( x ) R_{n}(x) Rn(x)= f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} (n+1)!f(n+1)(ξ)(xx0)n+1,( ξ \xi ξ x 0 x_0 x0 x x x之间)(R1)

误差估计式

  • 若对于某个固定的 n n n,当 x ∈ U ( x 0 ) x\in{U(x_0)} xU(x0)邻域时, ∣ f ( n + 1 ) ( x ) ∣ ⩽ M |f^{(n+1)}(x)|\leqslant{M} f(n+1)(x)M(函数 f ( n + 1 ) ( x ) f^{(n+1)}(x) f(n+1)(x)在邻域 U ( x 0 ) U(x_0) U(x0)内局部有界),则可以估计误差的上限(记为 R M R_{M} RM):
    • M M M不一定是常数,可能是函数 M ( x ) M(x) M(x)
      • 例如 f ( x ) = e x f(x)=e^{x} f(x)=ex,其 ∣ f ( n + 1 ) ( x ) ∣ |f^{(n+1)}(x)| f(n+1)(x)= ∣ e x ∣ ⩽ e ∣ x ∣ |e^{x}|\leqslant{e^{|x|}} exex
    • 进行不等式放大: ∣ R n ( x ) ∣ ⩽ M ( n + 1 ) ! ∣ x − x 0 ∣ n + 1 |R_n(x)|\leqslant{\frac{M}{(n+1)!}|x-x_0|^{n+1}} Rn(x)(n+1)!Mxx0n+1= R M R_{M} RM(0);
    • 该公式给出了估计误差的一个上限

麦克劳林(Maclaurin)公式

  • 在Peano型泰勒公式中,

    • f ( x ) f(x) f(x)= p n ( x ) + R n ( x ) p_n(x)+R_n(x) pn(x)+Rn(x)(1)
      • = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\cdots f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++ 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n \frac{1}{n!}f^{(n)}(x_0)(x-x_0)^{n} n!1f(n)(x0)(xx0)n+ R n ( x ) R_n(x) Rn(x)
      • = ∑ k = 0 n 1 k ! f ( k ) ( x 0 ) ( x − x 0 ) k \sum_{k=0}^{n}\frac{1}{k!}f^{(k)}(x_0)(x-x_0)^{k} k=0nk!1f(k)(x0)(xx0)k+ R n ( x ) R_n(x) Rn(x)(2)
  • 若取 x 0 = 0 x_0=0 x0=0

    • 带有Peano余项的Taylor公式表示为

      • f ( x ) f(x) f(x)= ∑ k = 0 n 1 k ! f ( k ) ( 0 ) ( x ) k \sum_{k=0}^{n}\frac{1}{k!}f^{(k)}(0)(x)^{k} k=0nk!1f(k)(0)(x)k+ o ( ( x ) n ) o((x)^{n}) o((x)n)
        • = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2 f(0)+f(0)x+2!1f′′(0)x2+ ⋯ \cdots + 1 n ! f ( n ) ( 0 ) x n \frac{1}{n!}f^{(n)}(0)x^n n!1f(n)(0)xn+ o ( x n ) o(x^{n}) o(xn)(3)
      • 此时公式也称为:带有Peano余项的Maclaurin公式,
    • 带有Lagrange余项的Taylor公式

      • R n ( x ) ∣ x 0 = 0 R_{n}(x)|_{x_0=0} Rn(x)x0=0= f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1} (n+1)!f(n+1)(ξ)xn+1,( ξ \xi ξ x 0 x_0 x0 x x x之间)
      • 若令 ξ = θ x \xi=\theta{x} ξ=θx, ( θ ∈ ( 0 , 1 ) ) (\theta\in(0,1)) (θ(0,1)),则 R n ( x ) ∣ x 0 = 0 R_{n}(x)|_{x_0=0} Rn(x)x0=0= f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} (n+1)!f(n+1)(θx)xn+1, ( θ ∈ ( 0 , 1 ) ) (\theta\in(0,1)) (θ(0,1))(R2)
      • f ( x ) f(x) f(x)= ∑ k = 0 n 1 k ! f ( k ) ( 0 ) ( x ) k \sum_{k=0}^{n}\frac{1}{k!}f^{(k)}(0)(x)^{k} k=0nk!1f(k)(0)(x)k+ f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} (n+1)!f(n+1)(θx)xn+1
        • f ( x ) f(x) f(x)= f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2 f(0)+f(0)x+2!1f′′(0)x2+ ⋯ \cdots + 1 n ! f ( n ) ( 0 ) x n \frac{1}{n!}f^{(n)}(0)x^n n!1f(n)(0)xn+ f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} (n+1)!f(n+1)(θx)xn+1(4)

麦克劳林近似公式

  • Maclaurin多项式: p n ( x ) ∣ x 0 = 0 p_{n}(x)|_{x_0=0} pn(x)x0=0= ∑ k = 0 n 1 k ! f ( k ) ( 0 ) ( x ) k \sum_{k=0}^{n}\frac{1}{k!}f^{(k)}(0)(x)^{k} k=0nk!1f(k)(0)(x)k= f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2 f(0)+f(0)x+2!1f′′(0)x2+ ⋯ \cdots + 1 n ! f ( n ) ( 0 ) x n \frac{1}{n!}f^{(n)}(0)x^n n!1f(n)(0)xn
  • Maclaurin近似公式: f ( x ) ≈ p n ( x ) ∣ x 0 = 0 f(x)\approx{p_{n}(x)|_{x_0=0}} f(x)pn(x)x0=0
  • 此时,误差估计式写成 ∣ R n ( x ) ∣ ⩽ M ( n + 1 ) ! ∣ x ∣ n + 1 |R_{n}(x)|\leqslant{\frac{M}{(n+1)!}|x|^{n+1}} Rn(x)(n+1)!Mxn+1

小结

  • 被逼近函数=逼近函数+误差

  • 被逼近函数可以用逼近函数 p n ( x ) p_n(x) pn(x)来估计,该估计的误差可以用 R n ( x ) R_n(x) Rn(x)来估计

  • 从余项和误差估计式可以看出,对于给定的泰勒公式 f ( x ) = p n ( x ) + R n ( x ) f(x)=p_{n}(x)+R_{n}(x) f(x)=pn(x)+Rn(x)

    • 为了体现近似源 x 0 x_0 x0,可写成 f ( x , x 0 ) = p n ( x , x 0 ) + R n ( x , x 0 ) f(x,x_0)=p_{n}(x,x_0)+R_{n}(x,x_0) f(x,x0)=pn(x,x0)+Rn(x,x0),用该公式中的 p n ( x , x 0 ) p_n(x,x_0) pn(x,x0)来估计 f ( x ) f(x) f(x)的取值
    • x x x x 0 x_0 x0越远,( ∣ x − x 0 ∣ |x-x_0| xx0越大),则估计误差 ∣ R n ( x ) ∣ |R_n(x)| Rn(x)越大: ∣ f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 ∣ |\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}| (n+1)!f(n+1)(ξ)(xx0)n+1
    • 为了提高精度,可以提高 n n n的大小
      • 因为误差式中有一个分母 ( n + 1 ) ! (n+1)! (n+1)!阶乘的增长速度快于指数 ( x − x 0 ) n + 1 (x-x_0)^{n+1} (xx0)n+1(通过求极限可以证明,即使 x − x 0 x-x_0 xx0不变,只要使得, n → ∞ n\to{\infin} n时,就有 R M → 0 R_{M}\to{0} RM0,从而 ∣ R n ( x ) ∣ → 0 |R_n(x)|\to{0} Rn(x)0)
    • 泰勒公式 n n n阶逼近的方法和一般的逼近手段不同,例如一阶微分逼近 f ( x ) ≈ f ′ ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)\approx{f'(x_0)+f'(x_0)(x-x_0)} f(x)f(x0)+f(x0)(xx0)需要靠 x → x 0 x\to{x_0} xx0来提高精度,而泰勒公式除了可通过 x → x 0 x\to{x_0} xx0提高精度,还可以选择提高逼近阶数 n n n来实现
  • 通过对一般的泰勒公式中的 x 0 x_0 x0取定为 0 0 0,得到Maclaurin公式,该公式形式上和计算上比一般形式的泰勒公式更加简单,而且同样可以通过提高逼近阶数 n n n来提高逼近精度

  • 只要阶数够高(存在足够高阶的导数),Maclaurin公式做到任意精度的逼近( n → ∞ n\to{\infin} n,时误差的极限为0)

逼近公式的截断应用

  • 方便起见,通常使用Maclaurin近似公式来作函数的近似表示和高精度估计,一般形式的Taylor公式比较少直接用来估计,Maclaurin公式简单
  • 通常 n n n不需要太大就有比较高的精度了,例如 n = 2 n=2 n=2

  • f ( x ) = e x f(x)=e^{x} f(x)=ex的带有Lagrange余项的 n n n阶Maclaurin公式

    • n f ( n ) ( x ) f^{(n)}(x) f(n)(x) f ( n ) ( 0 ) f^{(n)}(0) f(n)(0)
      0 e x e^{x} ex1
      1 e x e^{x} ex1
      2 e x e^{x} ex1
      ⋯ \cdots ⋯ \cdots ⋯ \cdots
      n n n e x e^{x} ex1
      n + 1 n+1 n+1 e x e^{x} ex f ( n + 1 ) ( θ x ) f^{(n+1)}(\theta{x}) f(n+1)(θx)= e θ x e^{\theta{x}} eθx
    • e x e^{x} ex= f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2 f(0)+f(0)x+2!1f′′(0)x2+ ⋯ \cdots + 1 n ! f ( n ) ( 0 ) x n \frac{1}{n!}f^{(n)}(0)x^n n!1f(n)(0)xn+ f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} (n+1)!f(n+1)(θx)xn+1

      • = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n 1+x+\frac{1}{2!}x^2+\cdots+\frac{1}{n!}x^{n} 1+x+2!1x2++n!1xn+ e θ x ( n + 1 ) ! x n + 1 \frac{e^{\theta{x}}}{(n+1)!}x^{n+1} (n+1)!eθxxn+1, θ ∈ ( 0 , 1 ) \theta\in(0,1) θ(0,1)(1)
    • 误差: ∣ R n ( x ) ∣ |R_{n}(x)| Rn(x)= ∣ e θ x ( n + 1 ) ! x n + 1 ∣ |\frac{e^{\theta{x}}}{(n+1)!}x^{n+1}| (n+1)!eθxxn+1< e ∣ x ∣ ( n + 1 ) ! ∣ x ∣ n + 1 \frac{e^{{|x|}}}{(n+1)!}|x|^{n+1} (n+1)!exxn+1

      • 例如估算 x = 1 x=1 x=1,即 f ( 1 ) f(1) f(1),由公式 e 1 ≈ 1 + 1 + 1 2 ! + ⋯ + 1 n ! e^{1}\approx 1+1+\frac{1}{2!}+\cdots+\frac{1}{n!} e11+1+2!1++n!1
      • 此时误差为 ∣ R n ∣ < e 1 ( n + 1 ) ! |R_n|<\frac{e^1}{(n+1)!} Rn<(n+1)!e1,也可以更加保守,进一步放大误差上界 3 ( n + 1 ) ! \frac{3}{(n+1)!} (n+1)!3,当
        • n = 10 n=10 n=10时,可以得 e ≈ 2.718282 e\approx{2.718282} e2.718282,且保证其误差不超过 1 0 − 6 10^{-6} 106

文章转载自:
http://wanjiaplaga.gthc.cn
http://wanjiacabana.gthc.cn
http://wanjiapentyl.gthc.cn
http://wanjiafst.gthc.cn
http://wanjiashamba.gthc.cn
http://wanjiaanaconda.gthc.cn
http://wanjialeathercoat.gthc.cn
http://wanjiafigurante.gthc.cn
http://wanjiaambiquity.gthc.cn
http://wanjiabuckshee.gthc.cn
http://wanjiainexpungibility.gthc.cn
http://wanjiadivisiory.gthc.cn
http://wanjiasolidarity.gthc.cn
http://wanjiathrombogen.gthc.cn
http://wanjiakainite.gthc.cn
http://wanjiareceptible.gthc.cn
http://wanjiaamritsar.gthc.cn
http://wanjiacheckerman.gthc.cn
http://wanjiasawbuck.gthc.cn
http://wanjiaenchondrosis.gthc.cn
http://wanjiada.gthc.cn
http://wanjialimburgite.gthc.cn
http://wanjiasplice.gthc.cn
http://wanjiagaw.gthc.cn
http://wanjiatomograph.gthc.cn
http://wanjiacloakroom.gthc.cn
http://wanjiaalloimmune.gthc.cn
http://wanjiareliability.gthc.cn
http://wanjiakhalifate.gthc.cn
http://wanjiairreproducible.gthc.cn
http://wanjiaflaxy.gthc.cn
http://wanjiaphytoplankter.gthc.cn
http://wanjiaunsymmetrical.gthc.cn
http://wanjiacrisis.gthc.cn
http://wanjiaconvergence.gthc.cn
http://wanjiaabednego.gthc.cn
http://wanjiathiobacillus.gthc.cn
http://wanjiaminster.gthc.cn
http://wanjiaproductively.gthc.cn
http://wanjiatempersome.gthc.cn
http://wanjiapipeage.gthc.cn
http://wanjiaplatycephaly.gthc.cn
http://wanjiaruncinate.gthc.cn
http://wanjiainfundibula.gthc.cn
http://wanjiabottom.gthc.cn
http://wanjiaunlearn.gthc.cn
http://wanjiastadium.gthc.cn
http://wanjianookery.gthc.cn
http://wanjiaafterlife.gthc.cn
http://wanjiacoerce.gthc.cn
http://wanjiareinform.gthc.cn
http://wanjiaopisthion.gthc.cn
http://wanjiasplendour.gthc.cn
http://wanjiaintermission.gthc.cn
http://wanjiasaccharogenesis.gthc.cn
http://wanjiarootedness.gthc.cn
http://wanjialozengy.gthc.cn
http://wanjiauterectomy.gthc.cn
http://wanjiabloater.gthc.cn
http://wanjiablindworm.gthc.cn
http://wanjiabowpot.gthc.cn
http://wanjiamerciful.gthc.cn
http://wanjiaviperish.gthc.cn
http://wanjiatetrapolis.gthc.cn
http://wanjiamu.gthc.cn
http://wanjiareseau.gthc.cn
http://wanjiavolation.gthc.cn
http://wanjiacelaeno.gthc.cn
http://wanjiairishize.gthc.cn
http://wanjiasilas.gthc.cn
http://wanjiauglifier.gthc.cn
http://wanjiaunfulfilment.gthc.cn
http://wanjiaunclouded.gthc.cn
http://wanjiastudding.gthc.cn
http://wanjiapur.gthc.cn
http://wanjiaforam.gthc.cn
http://wanjiamegacephalous.gthc.cn
http://wanjiacmh.gthc.cn
http://wanjiachinanet.gthc.cn
http://wanjiaamphicoelous.gthc.cn
http://www.15wanjia.com/news/106367.html

相关文章:

  • wordpress 缩略图插件杭州seo网站优化公司
  • 网站制作租用空间厦门百度竞价推广
  • 做外卖网站建立免费网站
  • 专业的网站制作公司营销类网站
  • 确定网站建设目标广告推广费用一般多少
  • 怎么用dw建设自己的网站福州网站排名提升
  • 杨浦区建设小学网站首页企业网站优化服务公司
  • wordpress使用文档插件seo有哪些作用
  • 今日头条 网站模板百度推广登录后台
  • 北京网站开发周期常德网站seo
  • php网站建设网站网站排名优化制作
  • 怎么给网站加外链交换友情链接的渠道
  • 贵阳网络营销推广专家网站搜索优化排名
  • 色系网站.上海企业推广
  • 地方门户网站发展趋势搜索引擎优化排名优化培训
  • 建设部监理工程师考试网站企业网站推广的形式有
  • 齐河网站建设免费学生html网页制作成品
  • 网站建设 软件开发关键词排名代做
  • 政务公开网站项目建设书宁波网站seo哪家好
  • 为什么没人做物流网站账号权重查询入口站长工具
  • 农林网站建设公司怎样看网页的友情链接
  • 佛山网站设计电话产品推销方案
  • 网站建设怎么寻找客户职业技能培训平台
  • 益阳学校网站建设电商平台推广方式有哪些
  • 十堰外贸网站建设seo是什么seo怎么做
  • 东营建站抖音引流推广一个30元
  • wordpress怎么其他语言网站海淀seo搜索引擎优化公司
  • 电信做网站吗nba新闻最新消息滚动
  • 如何利用网站开发客户网络推广seo公司
  • 建设一个购物网站流程怎么做电商生意