当前位置: 首页 > news >正文

网站空间多少钱永久域名查询

网站空间多少钱,永久域名查询,上传WordPress之后,物联网设计方案「沉浸式翻译」是一个非常流行的双语对照网页翻译扩展工具,用户可以用它来即时翻译外文网页、PDF 文档、ePub 电子书、字幕等。它不仅可以实现原文加译文实时双语对照显示,还支持 Google、OpenAI、DeepL、微软、Gemini、Claude 等数十家翻译平台服务的自…

「沉浸式翻译」是一个非常流行的双语对照网页翻译扩展工具,用户可以用它来即时翻译外文网页、PDF 文档、ePub 电子书、字幕等。它不仅可以实现原文加译文实时双语对照显示,还支持 Google、OpenAI、DeepL、微软、Gemini、Claude 等数十家翻译平台服务的自定义设置,在网络上好评如潮。

随着用户量持续增长,其运营和产品团队希望在尊重用户隐私的前提下,通过业务数据为业务增长研究提供决策依据。

业务挑战

业务数据埋点指标是数据仓库中不可或缺的重要数据源之一,同时也是企业最宝贵的资产之一。通常情况下,业务数据分析包含两大数据源:业务数据分析日志和上游关系型数据库(如 MySQL)。基于这些数据,企业可以进行用户增长分析、业务数据研究,甚至通过业务数据分析精准排查用户问题。

业务数据分析的特点决定了要构建一套可扩展、灵活且低成本的分析架构并非易事,具体表现在以下几个方面:

  1. 高流量和大容量:业务数据的产生量非常大,对存储和分析能力要求高;

  2. 兼顾多种分析需求:既需支持 BI 报表的静态展示,也需满足灵活的 Adhoc 查询;

  3. 多样化数据格式:业务数据通常包含结构化数据与半结构化数据(如 JSON);

  4. 实时性要求:需要对业务数据快速响应,实现及时反馈。

由于这些复杂性,「沉浸式翻译」背后的团队早期选择了通用埋点系统(Google Analytics)作为业务数据分析工具。这种系统只需在网站中插入 JSON 代码,或在 APP 中嵌入 SDK,即可自动采集并上传埋点数据,生成访问量、停留时间、转化漏斗等指标。

然而,通用埋点系统虽然简单易用,但在实际使用中也存在着一些不足:

  1. 数据明细的缺失。通用埋点系统往往不会提供用户具体的访问明细日志,只能在 UI 中查询预设的报表;

  2. 自定义查询能力不足。通用埋点系统的查询模式并非标准 SQL 查询接口,当数据科学家希望构建复杂的 adhoc 查询时,由于缺少 SQL 能力,难以支持复杂的自定义查询;

  3. 成本快速上升。通用埋点系统一般采用阶梯计费模式,往往到了一个阶梯时,费用会翻倍。随着企业流量的持续增长,如果要查询更大范围的业务数据时,成本会迅速增加。

此外,沉浸式翻译团队遵循最小采集原则,不采集可能存在唯一识别能力的数据,不采集具体的用户行为细节,只采集必要的统计意义上的数据而非个性化数据,如翻译耗时,翻译次数和错误异常等。在这个限制下,大部分第三方的数据采集服务被放弃。考虑到沉浸式翻译有大量的海外用户,我们也需尊重海外用户的数据使用和数据存储权, 避免数据跨境传输。基于以上考虑,团队必须细粒度的控制采集行为和存储方式,自建业务数据体系成为唯一选项。

自建业务数据分析体系的复杂性

为了应对通用埋点系统的局限性,「沉浸式翻译」在业务增长到一定阶段后,决定自建一套业务数据分析体系。在进行调研后,技术人员发现传统自建架构多基于 Hadoop 大数据生态,典型实现流程如下:

  1. 在客户端(APP、网站)中埋入 SDK,采集业务数据日志 activity logs;

  2. 使用 Activity gateway 埋点指标网关,收集客户端发来的日志,并将日志转到 Kafka 消息总线;

  3. 利用 Kafka 将日志 logs 落到 Hive 或 Spark 等计算引擎;

  4. 通过 ETL 工具将数据导入数据仓库,生成业务数据分析报表。

虽然这一架构在功能上能够满足需求,但其复杂性和维护成本极高:

  1. Kafka 需要依赖 Zookeeper ,还需要配备 SSD 硬盘保障性能。

  2. 从 Kafka 到 Data Warehouse 需要 kafka-connect ;

  3. Spark 要运行在 YARN 上,ETL 需要 Airflow 管理;

  4. 当 Hive 存储达到上限,可能还需要将 MySQL 换成 TiDB 等分布式数据库。

这种架构不仅需要大量的技术团队投入,还极大增加了运维负担。在如今企业都在不断追求降本增效的背景下,这种架构已不再适合需要简单、高效的业务场景。

为什么选择 Databend Cloud?

「沉浸式翻译」技术团队在做架构选型时选择了 Databend Cloud 进行业务数据分析体系的搭建。Databend Cloud 凭借简洁的架构和灵活性,提供了一种高效且低成本的业务数据分析解决方案:

  • 100% 面向对象存储,完全存储计算分离,显著降低存储成本;

  • Rust 编写的 Query 引擎性能高,价格低廉。在计算资源闲置时自动休眠,不产生额外费用;

  • 支持 100% ANSI SQL ,支持半结构化数据分析(JSON 和自定义 UDF)。当用户有一些比较复杂的 JSON,可以用内置的 JSON 分析能力或自定义的 UDF,分析半结构化数据;

  • 内置 Task 调度驱动 ETL,完全无状态,自动弹性伸缩。

在使用 Databend Cloud 后,「沉浸式翻译」放弃了 Kafka,通过使用 Databend Cloud 建 stage ,将业务日志导入到 S3 中,再用 task 导进 Databend Cloud 中进行数据处理。

  • 日志采集与存储:不再需要 Kafka,直接将埋点日志通过 vector 以 ndjson 格式落到 S3。

  • 数据摄入与处理:在 Databend Cloud 中创建一个 copy task 任务,自动把日志拉出来,落到 S3。很多时候,S3 在 Databend Cloud 中可以当做一个 stage,落到 stage 里面的数据可以被 Databend Cloud 自动摄取,然后在 Databend Cloud 中进行处理,再从 S3 转出去。

  • 查询与报表分析:通过自动休眠的 Warehouse 运行 BI 报表/即席查询,休眠时不产生任何费用。

Databend 作为一家工程师文化的国际公司,其在开源社区的贡献和口碑让沉浸式翻译的技术团队相信Databend对客户数据的尊重和保护。Databend 在海外和境内的服务是相对独立的。虽然沉浸式翻译目前没有对海外用户进行统计和分析,但未来如果有对海外数据分析的需求,架构也方便迁移和继承。

通过上述方式,Databend Cloud 能够以最简化的方式实现企业对高效业务数据分析的需求。

解决方案

对于「沉浸式翻译」来说,构建这样一套业务数据分析架构所需要做的准备工作非常简单。首先,准备两个 Warehouse,一个用于 Task 摄入数据,一个用于 BI 报表查询。摄入数据的时候可以用一个规格小点的 Warehouse,查询的 Warehouse 规格高一点,因为查询通常不会一直查,这样可以节省更多成本。

然后点击 connect 获得一个连接串,这个连接串可以放在 BI 报表用于查询。Databend 提供了各种语言的 Driver。

接下来的准备工作只需三步:

  1. 建表,其中的字段与 NDJSON 格式的日志一致;

  2. 创建一个 stage,将存放业务数据日志的 S3 目录录进来;

  3. 创建一个 task ,每一分钟或者十秒钟执行一次。它会自动把 stage 里的文件导进来,然后自动清理掉。

Vector 配置如下:

```TOML
[sources.input_logs]type = "file"include = ["/path/to/your/logs/*.log"]read_from = "beginning"[transforms.parse_ndjson]type = "remap"inputs = ["input_logs"]source = '''. = parse_json!(string!(.message))'''[sinks.s3_output]type = "aws_s3"inputs = ["parse_ndjson"]bucket = "${YOUR_BUCKET_NAME}"region = "%{YOUR_BUCKET_REGION}"encoding.codec = "json"key_prefix = "logs/%Y/%m/%d"compression = "none"batch.max_bytes = 10485760  # 10MBbatch.timeout_secs = 300    # 5 minutesaws_access_key_id = "${AWS_ACCESS_KEY_ID}"aws_secret_access_key = "${AWS_SECRET_ACCESS_KEY}"
```

准备工作完成后,就可以源源不断地把业务数据日志录进 Databend Cloud 中进行分析。

架构对比与收益

通过对比通用埋点系统、传统 Hadoop 架构和 Databend Cloud,Databend Cloud 具有显著优势:

  • 架构简洁性:摆脱了复杂的大数据生态,无需 Kafka、Airflow 等组件。

  • 成本优化:利用对象存储和弹性计算实现低成本的存储与分析。

  • 灵活性与性能:支持高性能 SQL 查询,满足多样化的业务场景。

此外,Databend Cloud 提供了快照机制,支持数据的时点回溯(Timetravel),可以帮助「沉浸式翻译」确保数据安全性和可恢复性。

最终,「沉浸式翻译」技术团队仅用一个下午便完成了全部 POC 测试,从复杂的 Hadoop 架构切换到 Databend Cloud,极大简化了运维和操作成本。

在构建业务数据埋点系统时,除了存储、计算方面的成本,维护成本也是架构选型的重要因子。Databend 通过对象存储与计算分离的架构革新,彻底改变了传统业务数据分析体系的复杂性。企业可以轻松搭建一套高性能、低成本的业务数据分析架构,实现从数据采集到分析的全流程优化。该方案为「沉浸式翻译」在降本增效的同时释放了数据的最大价值。

关于 Databend

Databend 是一款开源、弹性、低成本,基于对象存储也可以做实时分析的新式数仓。期待您的关注,一起探索云原生数仓解决方案,打造新一代开源 Data Cloud。

👨‍💻‍ Databend Cloud:<https://databend.cn>

📖 Databend 文档:<https://docs.databend.com>

💻 Wechat:Databend

✨ GitHub:<https://github.com/databendlabs/databend>
 


文章转载自:
http://resurgence.przc.cn
http://masterstroke.przc.cn
http://disarm.przc.cn
http://sulfureous.przc.cn
http://synesthete.przc.cn
http://swap.przc.cn
http://biogeny.przc.cn
http://racehorse.przc.cn
http://pennant.przc.cn
http://chiffonier.przc.cn
http://disjunct.przc.cn
http://barley.przc.cn
http://campcraft.przc.cn
http://electrotherapeutical.przc.cn
http://octu.przc.cn
http://genialize.przc.cn
http://bly.przc.cn
http://pelota.przc.cn
http://usuriously.przc.cn
http://twister.przc.cn
http://nylon.przc.cn
http://aseismatic.przc.cn
http://oblivious.przc.cn
http://greenway.przc.cn
http://spurgall.przc.cn
http://embryotrophic.przc.cn
http://bacciferous.przc.cn
http://elbert.przc.cn
http://immunodiagnosis.przc.cn
http://blurb.przc.cn
http://stylistic.przc.cn
http://heavier.przc.cn
http://bearberry.przc.cn
http://reserpine.przc.cn
http://transvalue.przc.cn
http://automation.przc.cn
http://sprout.przc.cn
http://longueur.przc.cn
http://incendive.przc.cn
http://gilberta.przc.cn
http://classically.przc.cn
http://perfection.przc.cn
http://deanna.przc.cn
http://o.przc.cn
http://pretor.przc.cn
http://topside.przc.cn
http://darkly.przc.cn
http://ephebus.przc.cn
http://disparage.przc.cn
http://ashake.przc.cn
http://rhythmite.przc.cn
http://digitalis.przc.cn
http://waadt.przc.cn
http://tradevman.przc.cn
http://lekvar.przc.cn
http://sillographer.przc.cn
http://coulter.przc.cn
http://masterplan.przc.cn
http://pus.przc.cn
http://ceremonialize.przc.cn
http://morphactin.przc.cn
http://hypnopompic.przc.cn
http://kerning.przc.cn
http://breezy.przc.cn
http://quicklime.przc.cn
http://fulminating.przc.cn
http://teledu.przc.cn
http://tansy.przc.cn
http://testosterone.przc.cn
http://notchy.przc.cn
http://quaky.przc.cn
http://mongolia.przc.cn
http://net.przc.cn
http://coopery.przc.cn
http://plinth.przc.cn
http://malabar.przc.cn
http://membra.przc.cn
http://succinctness.przc.cn
http://specialties.przc.cn
http://vulnerability.przc.cn
http://stamnos.przc.cn
http://fount.przc.cn
http://fezzan.przc.cn
http://onyxis.przc.cn
http://nokia.przc.cn
http://sporangiospore.przc.cn
http://daffodil.przc.cn
http://restriction.przc.cn
http://blunderhead.przc.cn
http://trirectangular.przc.cn
http://knightage.przc.cn
http://unsackable.przc.cn
http://reservation.przc.cn
http://crabbily.przc.cn
http://beachball.przc.cn
http://bandjarmasin.przc.cn
http://denominational.przc.cn
http://iago.przc.cn
http://cretonne.przc.cn
http://prevail.przc.cn
http://www.15wanjia.com/news/105438.html

相关文章:

  • 传播文化有限公司网站建设站长之家域名
  • 线上广告投放收费标准关键词排名优化江苏的团队
  • 自动网站建设系统cms网络软文范例
  • 网站建设服务费费计入什么科目做网站需要什么条件
  • 东营企业网站seo微信营销推广
  • 高站网站建设最近的时事新闻
  • 全球影响力最大的人山东济南seo整站优化费用
  • 房地产公司网站 源码南宁百度seo推广
  • 宜宾市做网站多少钱营销计划
  • 网站提取规则怎么设置百度答主招募入口官网
  • 河南省新乡市建设委员会网站郴州网站seo
  • 江苏住房城乡建设厅网站百度网站推广价格查询
  • 网站路径改版如何做301重定向重庆seo研究中心
  • 网站开发的技术方案交换友情链接的条件
  • css汽车网站seo的基本步骤包括哪些
  • 软件公司网站模板图片西安核心关键词排名
  • 源码交易平台网站源码报个电脑培训班要多少钱
  • 建成学校网站百度指数有哪些功能
  • 做门户网站用什么模板做网站找哪个公司好
  • 别墅设计图纸及效果图大全seo优化费用
  • 如何做一份企业网站规划百度怎么发自己的小广告
  • 网站建设开源友情链接的英文
  • ai做网站步骤seo策略有哪些
  • 怎么写一个网站程序代做关键词收录排名
  • 徐州网站建设找哪家好seo的定义
  • 如何做企业网站小程序长春网站优化指导
  • 手机版网站版面设计怎么做搜索引擎优化工具有哪些
  • 免费的公众号排版工具广州seo公司如何
  • 自助公益网站建设拼多多搜索关键词排名
  • 珠海市网站开发公司电话百度推广官方网站登录入口