当前位置: 首页 > news >正文

半岛官方网站下载软文平台发布

半岛官方网站下载,软文平台发布,51网站一起做网店,做网站公司哪家进入正文前,感谢宝子们订阅专题、点赞、评论、收藏!关注IT贫道,获取高质量博客内容! 🏡个人主页:含各种IT体系技术,IT贫道_Apache Doris,大数据OLAP体系技术栈,Kerberos安全认证-CSDN博客 &…

 

 进入正文前,感谢宝子们订阅专题、点赞、评论、收藏!关注IT贫道,获取高质量博客内容!

🏡个人主页:含各种IT体系技术,IT贫道_Apache Doris,大数据OLAP体系技术栈,Kerberos安全认证-CSDN博客

📌订阅:拥抱独家专题,你的订阅将点燃我的创作热情!

👍点赞:赞同优秀创作,你的点赞是对我创作最大的认可!

⭐️ 收藏:收藏原创博文,让我们一起打造IT界的荣耀与辉煌!

✏️评论:留下心声墨迹,你的评论将是我努力改进的方向!


目录

1. HDFS

1.1 语法

1.2 其他配置

1.3 示例

​​​​​​​​​​​​​​2. MySQL

2.1 语法

2.2 示例

2.3 测试 replace_query  

2.4 测试 on_duplicate_clause

​​​​​​​​​​​​​​3. Kafka

3.1 语法

3.2 示例

3.3 示例


ClickHouse提供了许多与外部系统集成的方法,包括一些表引擎。这些表引擎与其他类型的表引擎类似,可以用于将外部数据导入到ClickHouse中,或者在ClickHouse中直接操作外部数据源。

​​​​​​​1. HDFS

HDFS引擎支持ClickHouse 直接读取HDFS中特定格式的数据文件,目前文件格式支持Json,Csv文件等,ClickHouse通过HDFS引擎建立的表,不会在ClickHouse中产生数据,读取的是HDFS中的数据,将HDFS中的数据映射成ClickHouse中的一张表,这样就可以使用SQL操作HDFS中的数据。

ClickHouse并不能够删除HDFS上的数据,当我们在ClickHouse客户端中删除了对应的表,只是删除了表结构,HDFS上的文件并没有被删除,这一点跟Hive的外部表十分相似。

1.1 语法

ENGINE = HDFS(URI, format)

注意:URI是HDFS文件路径,format指定文件格式。HDFS文件路径中文件为多个时,可以指定成some_file_?,或者当数据映射的是HDFS多个文件夹下数据时,可以指定somepath/* 来指定URI

1.2 其他配置

由于HDFS配置了HA 模式,有集群名称,所以URI使用mycluster HDFS集群名称时,ClickHouse不识别,这时需要做以下配置:

  1. 将hadoop路径下$HADOOP_HOME/etc/hadoop下的hdfs-site.xml文件复制到/etc/clickhouse-server目录下。
  2. 修改/etc/init.d/clickhouse-server 文件,加入一行 “export LIBHDFS3_CONF=/etc/clickhouse-server/hdfs-site.xml”
  3. 重启ClickHouse-server 服务

serveice clickhouse-server restart

当然,这里也可以不做以上配置,在写HDFS URI时,直接写成对应的节点+端口即可。

1.3 示例

#在HDFS路径 hdfs://mycluster/ch/路径下,创建多个csv文件,写入一些数据c1.csv文件内容:1,张三,192,李四,20c2.csv文件内容:3,王五,214,马六,22#创建表 t_hdfs,使用HDFS引擎node1 :) create table t_hdfs(id UInt8,name String,age UInt8) engine = HDFS('hdfs://mycluster/ch/*.csv','CSV')#查询表 t_hdfs中的数据node1 :) select * from t_hdfs;┌─id─┬─name─┬─age─┐│  3  │ 王五  │  21 ││  4  │ 马六  │  22 │└────┴──────┴─────┘┌─id─┬─name─┬─age─┐│  1  │ 张三  │  19 ││  2  │ 李四  │  20 │└────┴──────┴─────┘注意:这里表t_hdfs不会在clickhouse对应的节点路径下创建数据目录,同时这种表映射的是HDFS路径中的csv文件,不能插入数据,t_hdfs是只读表。#创建表 t_hdfs2 文件 ,使用HDFS引擎node1 :) create table t_hdfs2(id UInt8,name String,age UInt8) engine = HDFS('hdfs://mycluster/chdata','CSV');#向表 t_hdfs2中写入数据node1 :) insert into t_hdfs2 values(5,'田七',23),(6,'赵八',24);#查询表t_hdfs2中的数据node1 :) select * from t_hdfs2;┌─id─┬─name─┬─age─┐│  5  │ 田七  │  23 ││  6  │  赵八 │  24 │└────┴──────┴─────┘注意:t_hdfs2表没有直接映射已经存在的HDFS文件,这种表允许查询和插入数据。

​​​​​​​​​​​​​​2. MySQL

ClickHouse MySQL数据库引擎可以将MySQL某个库下的表映射到ClickHouse中,使用ClickHouse对数据进行操作。ClickHouse同样支持MySQL表引擎,即映射一张MySQL中的表到ClickHouse中,使用ClickHouse进行数据操作,与MySQL数据库引擎一样,这里映射的表只能做查询和插入操作,不支持删除和更新操作。

2.1 语法

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster](name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1] [TTL expr1],name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2] [TTL expr2],...) ENGINE = MySQL('host:port', 'database', 'table', 'user', 'password'[, replace_query, 'on_duplicate_clause']);
  • 以上语法的解释如下:
  1. host:port - MySQL服务器名称和端口
  2. database - MySQL 数据库。
  3. table - 映射的MySQL中的表
  4. user - 登录mysql的用户名
  5. password - 登录mysql的密码
  6. replace_query  - 将INSERT INTO 查询是否替换为 REPLACE INTO 的标志,默认为0,不替换。当设置为1时,所有的insert into 语句更改为 replace into 语句。当插入的数据有重复主键数据时,此值为0默认报错,此值为1时,主键相同这条数据,默认替换成新插入的数据。
  7. on_duplicate_clause - 默认不使用。当插入数据主键相同时,可以指定只更新某列的数据为新插入的数据,对应于on duplicate key 后面的语句,其他的值保持不变,需要replace_query 设置为0。

2.2 示例

#在mysql 中创建一张表 t_ch,指定id为主键CREATE TABLE t_ch (id INT,NAME VARCHAR (255),age INT,PRIMARY KEY (id))#向表中增加一些数据insert into  t_ch values (1,"张三",18),(2,"李四",19),(3,"王五",20)#在ClickHouse中创建MySQL引擎表 t_mysql_enginenode1 :) create table t_mysql_engine (:-]  id UInt8,:-]  name String,:-]  age UInt8:-] )engine = MySQL('node2:3306','test','t_ch','root','123456');#查询ClickHouse表 t_mysql_engine 中的数据:node1 :) select * from t_mysql_engine;┌─id─┬─name─┬─age─┐│  1  │ 张三  │  18 ││  2  │ 李四  │  19 ││  3  │ 王五  │  20 │└────┴──────┴─────┘#在ClickHouse中向表 t_mysql_engine中插入一条数据node1 :) insert into t_mysql_engine values (4,'马六','21');┌─id─┬─name─┬─age─┐│  1   │ 张三    │  18   ││  2   │ 李四    │  19   ││  3   │ 王五    │   20  ││  4   │ 马六    │  21   │└───┴─────┴───┘#在ClickHouse中向表 t_mysql_engine中再插入一条数据,这里主键重复,报错。node1 :) insert into t_mysql_engine values (4,'田七','22');Exception: mysqlxx::BadQuery: Duplicate entry '4' for key'PRIMARY' (node2:3306).注意:在clickhouse 中 t_mysql_engine表不会在ClickHouse服务器节点上创建数据目录。

2.3 测试 replace_query  

#在mysql 中删除表 t_ch,重新创建,指定id为主键CREATE TABLE t_ch (id INT,NAME VARCHAR (255),age INT,PRIMARY KEY (id))#向表中增加一些数据insert into  t_ch values (1,"张三",18),(2,"李四",19),(3,"王五",20)#在ClickHouse中删除MySQL引擎表 t_mysql_engine,重建node1 :) create table t_mysql_engine (:-]  id UInt8,:-]  name String,:-]  age UInt8:-] )engine = MySQL('node2:3306','test','t_ch','root','123456',1);#查询ClickHouse表 t_mysql_engine 中的数据:node1 :) select * from t_mysql_engine;┌─id─┬─name─┬─age─┐│  1  │ 张三  │  18 ││  2  │ 李四  │  19 ││  3  │ 王五  │  20 │└────┴──────┴─────┘#在ClickHouse中向表 t_mysql_engine中插入一条数据,主键重复。这里由于指定了replace_query = 1 ,所以当前主键数据会被替换成新插入的数据。node1 :) insert into t_mysql_engine values (3,'马六','21');#查询ClichHouse t_mysql_engine表数据node1 :) select * from t_mysql_engine;┌─id─┬─name─┬─age─┐│  1  │ 张三  │  18 ││  2  │ 李四  │  19 ││  3  │ 马六  │  21 │└────┴──────┴─────┘

2.4 测试 on_duplicate_clause

#在mysql 中删除表 t_ch,重新创建,指定id为主键CREATE TABLE t_ch (id INT,NAME VARCHAR (255),age INT,PRIMARY KEY (id))#向表中增加一些数据insert into  t_ch values (1,"张三",18),(2,"李四",19),(3,"王五",20)#在ClickHouse中删除MySQL引擎表 t_mysql_engine,重建node1 :) create table t_mysql_engine (:-]  id UInt8,:-]  name String,:-]  age UInt8:-] )engine = MySQL('node2:3306','test','t_ch','root','123456',0,'update age = values(age)');#查询ClickHouse表 t_mysql_engine 中的数据:node1 :) select * from t_mysql_engine;┌─id─┬─name─┬─age─┐│  1  │ 张三  │  18 ││  2  │ 李四  │  19 ││  3  │ 王五  │  20 │└────┴──────┴─────┘#在ClickHouse 中向表 t_mysql_engine中插入一条数据node1 :) insert into t_mysql_engine values (4,'马六','21');┌─id─┬─name─┬─age─┐│  1   │ 张三    │  18   ││  2   │ 李四    │   19  ││  3   │ 王五    │  20   ││  4   │ 马六    │  21   │└──┴─────┴────┘#在ClickHouse中向表 t_mysql_engine中插入一条数据,主键重复。node1 :) insert into t_mysql_engine values (4,'田七','100');#查询ClichHouse t_mysql_engine表数据node1 :) select * from t_mysql_engine;┌─id─┬─name─┬─age─┐│  1  │ 张三  │  18 ││  2  │ 李四  │  19 ││  3  │ 王五  │  20 ││  4  │ 马六  │ 100 │└────┴──────┴─────┘

​​​​​​​​​​​​​​3. Kafka

ClickHouse中还可以创建表指定为Kafka为表引擎,这样创建出的表可以查询到Kafka中的流数据。对应创建的表不会将数据存入ClickHouse中,这里这张kafka引擎表相当于一个消费者,消费Kafka中的数据,数据被查询过后,就不会再次被查询到。

3.1 语法

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster](name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],...) ENGINE = Kafka()SETTINGSkafka_broker_list = 'host:port',kafka_topic_list = 'topic1,topic2,...',kafka_group_name = 'group_name',kafka_format = 'data_format'[,]
  • 对以上参数的解释:
  1. kafka_broker_list: 以逗号分隔的Kafka Broker节点列表
  2. kafka_topic_list : topic列表
  3. kafka_group_name : kafka消费者组名称
  4. kafka_format : Kafka中消息的格式,例如:JSONEachRow、CSV等等,具体参照https://clickhouse.tech/docs/en/interfaces/formats/。这里一般使用JSONEachRow格式数据,需要注意的是,json字段名称需要与创建的Kafka引擎表中字段的名称一样,才能正确的映射数据。

3.2 示例

#创建表 t_kafka_consumer ,使用Kafka表引擎node1 :) create table t_kafka_consumer (:-] id UInt8,:-] name String,:-] age UInt8:-] ) engine = Kafka():-] settings:-] kafka_broker_list='node1:9092,node2:9092,node3:9092',:-] kafka_topic_list='ck-topic',:-] kafka_group_name='group1',:-] kafka_format='JSONEachRow';#启动kafka,在kafka中创建ck-topic topic,并向此topic中生产以下数据:创建topic:kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic ck-topic --partitions 3 --replication-factor 3生产数据:kafka-console-producer.sh --broker-list node1:9092,node2:9092,node3:9092 --topic ck-topic生产数据如下:{"id":1,"name":"张三","age":18}{"id":2,"name":"李四","age":19}{"id":3,"name":"王五","age":20}{"id":4,"name":"马六","age":21}{"id":5,"name":"田七","age":22}#在ClickHouse中查询表 t_kafka_consumer数据,可以看到生产的数据node1 :) select * from t_kafka_consumer;┌─id─┬─name─┬─age─┐│  2  │ 李四  │  19 ││  5  │ 田七  │  22 ││  1  │ 张三  │  18 ││  4  │ 马六  │  21 ││  3  │ 王五  │  20 │└────┴──────┴─────┘注意:再次查看表 t_kafka_consumer数据 ,我们发现读取不到任何数据,这里对应的ClikcHouse中的Kafka引擎表,只是相当于是消费者,消费读取Kafka中的数据,数据被消费完成之后,不能再次查询到对应的数据。

以上在ClickHouse中创建的Kafka引擎表 t_kafka_consumer 只是一个数据管道,当查询这张表时就是消费Kafka中的数据,数据被消费完成之后,不能再次被读取到。如果想将Kafka中topic中的数据持久化到ClickHouse中,我们可以通过物化视图方式访问Kafka中的数据,可以通过以下三个步骤完成将Kafka中数据持久化到ClickHouse中:

  1. 创建Kafka 引擎表,消费kafka中的数据。
  2. 再创建一张ClickHouse中普通引擎表,这张表面向终端用户查询使用。这里生产环境中经常创建MergeTree家族引擎表。
  3. 创建物化视图,将Kafka引擎表数据实时同步到终端用户查询表中。

3.3 示例

#在ClickHouse中创建 t_kafka_consumer2 表,使用Kafka引擎node1 :) create table t_kafka_consumer2 (:-] id UInt8,:-] name String,:-] age UInt8:-] ) engine = Kafka():-] settings:-] kafka_broker_list='node1:9092,node2:9092,node3:9092',:-] kafka_topic_list='ck-topic',:-] kafka_group_name='group1',:-] kafka_format='JSONEachRow';#在ClickHouse中创建一张终端用户查询使用的表,使用MergeTree引擎node1 :) create table t_kafka_mt(:-] id UInt8,:-] name String,:-] age UInt8:-] ) engine = MergeTree():-] order by id;#创建物化视图,同步表t_kafka_consumer2数据到t_kafka_mt中node1 :) create materialized view  view_consumer to t_kafka_mt:-] as select id,name,age from t_kafka_consumer2;注意:物化视图在ClickHouse中也是存储数据的,create  materialized view  view_consumer to t_kafka_mt 语句是将物化视图view_consumer中的数据存储到到对应的t_kafka_mt 表中,这样同步的目的是如果不想继续同步kafka中的数据,可以直接删除物化视图即可。#向Kafka ck-topic中生产以下数据:生产数据:kafka-console-producer.sh --broker-list node1:9092,node2:9092,node3:9092 --topic ck-topic生产数据如下:{"id":1,"name":"张三","age":18}{"id":2,"name":"李四","age":19}{"id":3,"name":"王五","age":20}{"id":4,"name":"马六","age":21}{"id":5,"name":"田七","age":22}#查询表 t_kafka_mt中的数据,数据同步完成。node1 :) select * from t_kafka_mt;┌─id─┬─name─┬─age─┐│  1  │ 张三  │  18 ││  2  │ 李四  │  19 ││  3  │ 王五  │  20 ││  4  │ 马六  │  21 ││  5  │ 田七  │  22 │└────┴──────┴─────┘

👨‍💻如需博文中的资料请私信博主。



文章转载自:
http://anastatic.gthc.cn
http://agendum.gthc.cn
http://underutilize.gthc.cn
http://tripart.gthc.cn
http://heartwood.gthc.cn
http://constitutional.gthc.cn
http://thyrotoxic.gthc.cn
http://soundscriber.gthc.cn
http://reaganomics.gthc.cn
http://trompe.gthc.cn
http://jimmy.gthc.cn
http://melanesian.gthc.cn
http://triptych.gthc.cn
http://fissionable.gthc.cn
http://nazification.gthc.cn
http://spinthariscope.gthc.cn
http://dieb.gthc.cn
http://hematoxylic.gthc.cn
http://credulous.gthc.cn
http://balladist.gthc.cn
http://pigout.gthc.cn
http://starred.gthc.cn
http://nitinol.gthc.cn
http://handwringing.gthc.cn
http://carmel.gthc.cn
http://slavist.gthc.cn
http://bluestocking.gthc.cn
http://biota.gthc.cn
http://inquisitively.gthc.cn
http://incommensurate.gthc.cn
http://muntz.gthc.cn
http://memorize.gthc.cn
http://tenaculum.gthc.cn
http://explicatory.gthc.cn
http://trichromatic.gthc.cn
http://trichoma.gthc.cn
http://desirably.gthc.cn
http://equiponderant.gthc.cn
http://scholastical.gthc.cn
http://altocumulus.gthc.cn
http://tugboat.gthc.cn
http://fray.gthc.cn
http://seasoned.gthc.cn
http://flounder.gthc.cn
http://reemployment.gthc.cn
http://showroom.gthc.cn
http://micr.gthc.cn
http://yonker.gthc.cn
http://cowgirl.gthc.cn
http://ionopause.gthc.cn
http://crocoite.gthc.cn
http://overinflated.gthc.cn
http://glorification.gthc.cn
http://innovator.gthc.cn
http://strychnin.gthc.cn
http://overwound.gthc.cn
http://germicide.gthc.cn
http://pseudo.gthc.cn
http://being.gthc.cn
http://acinus.gthc.cn
http://homonymy.gthc.cn
http://finder.gthc.cn
http://ruddiness.gthc.cn
http://comparator.gthc.cn
http://freyr.gthc.cn
http://luteotrophic.gthc.cn
http://regulus.gthc.cn
http://coreligionist.gthc.cn
http://ciborium.gthc.cn
http://uninsured.gthc.cn
http://preserval.gthc.cn
http://discontiguous.gthc.cn
http://gallow.gthc.cn
http://inebrious.gthc.cn
http://resinic.gthc.cn
http://chateaubriand.gthc.cn
http://anker.gthc.cn
http://immurement.gthc.cn
http://aaal.gthc.cn
http://shammy.gthc.cn
http://trailerable.gthc.cn
http://honky.gthc.cn
http://stockholder.gthc.cn
http://limoges.gthc.cn
http://subconscious.gthc.cn
http://overprint.gthc.cn
http://eumycete.gthc.cn
http://anqing.gthc.cn
http://vinegarette.gthc.cn
http://monocarpellary.gthc.cn
http://perfection.gthc.cn
http://angling.gthc.cn
http://trichogyne.gthc.cn
http://pretend.gthc.cn
http://republicanise.gthc.cn
http://neglectful.gthc.cn
http://wilderness.gthc.cn
http://shamo.gthc.cn
http://cinchonism.gthc.cn
http://logman.gthc.cn
http://www.15wanjia.com/news/101340.html

相关文章:

  • 做加盟正规网站世界球队最新排名
  • 北京网站排名优化google play谷歌商店
  • 做网站法律条文手机上如何制作自己的网站
  • 长沙哪家做网站设计好关键词搜索热度
  • php做的网站源代码百度网首页官网登录
  • 如何做网站的关键词免费推广软件平台
  • 政府网站建设内容规划网页设计基础
  • 龙岩建设局网站怎么搭建一个网站
  • 广州大型网站建设公司搜索引擎推广和优化方案
  • 徐州网络建站模板网络营销和传统营销的区别和联系
  • 有关网站空间不正确的说法是中国培训网
  • 怎么做网站页面让顾客心动的句子
  • 包头正大光电 做网站百度热线电话
  • 游戏网站开发计划书广州疫情最新消息
  • 创世网站建设 优帮云优化教程网官网
  • 安徽省建设厅查询网站软文发稿网
  • 郑州网站建设 华数最新腾讯新闻
  • 企业网站怎么做毕业设计宣传营销方式有哪些
  • 做网站去什么公司好营销培训总结
  • 江西省网站建设先进表彰魔贝课凡seo
  • 视觉网站建设金融网站推广圳seo公司
  • 玉林网站建设网站模板平台资源
  • 镇江网站制作费用yandex搜索引擎入口
  • 威海做网站的百度手机助手下载安卓版
  • 网站开发论文答辩问题注册安全工程师
  • 成都的网站建设开发公司哪家好宁波seo网站推广
  • 苹果手机怎么做网站软文编辑
  • 做ppt模板下载网站北京建站
  • 海网站建设seo网站快速排名
  • 搭建网站的方法做销售记住这十句口诀