当前位置: 首页 > news >正文

青岛市住房和城乡建设局官方网站免费seo刷排名

青岛市住房和城乡建设局官方网站,免费seo刷排名,做网站的公司现在还赚钱吗,影响网站排名的因素pandas pandas是基于python写的,底层的数据结构是Numpy数据(ndarray)。pandas自身有两个核心的数据结构:DataFrame和Series,前者是二维的表格数据结构,后者是一维标签化数组。 polars polars是用Rust(一种系统级编程…

pandas

pandas是基于python写的,底层的数据结构是Numpy数据(ndarray)。pandas自身有两个核心的数据结构:DataFrame和Series,前者是二维的表格数据结构,后者是一维标签化数组。

polars

polars是用Rust(一种系统级编程语言,具有非常好的并发性和性能)写的,支持Python、Rust和NodeJS。主要特性有:

  1. 快:Polars从零开始,没有任何扩展依赖,底层设计(import速度非常快)。
  2. I/O:完美支持常见的数据存储层:本地、云存储、数据库。
  3. 使用简单:使用它的内置操作,Polars内部决定使用最有效的方法执行。
  4. 核外:Polars支持使用它的streaming API操作核外数据转化。基于磁盘的内存映射技术,大数据下允许数据在磁盘和内存之间进行高效的交换。可以处理比机器可用RAM更大的数据集
  5. 并行:Polars在不增加额外配置事,会充分利用机器可利用的cpu(可利用的所有核)。
  6. 矢量查询引擎:Polars使用Apache Arrow(一种列式数据格式,Arrow内存格式支持零拷贝读取,以实现闪电般快速的数据访问,而无需序列化开销)。以矢量的方式处理queries。它使用SIMD(单指令多数据,一种并行处理方式)优化CPU的利用。

pandas vs polars

  1. 性能:pandas提供了强大的数据分析功能,对处理小数据集更方便。polars利用多线程和内存映射技术,具有更快的速度,适合处理大型数据集。

  2. 内存使用:Pandas在加载数据时需要将其完全读入内存;polars支持streaming API操作核外数据转化,可以在处理大型数据集时降低内存使用,从而减少了内存限制。

  3. 数据操作:pandas具有丰富的数据操作和处理方法,使用DataFrame进行数据清洗、转换、分组、聚合等操作;Polars提供了类似于SQL的查询操作,使得对数据进行筛选、转换和聚合更加直观。

  4. 生态系统:pandas已经非常成熟,具有大量的学习文档、教程和扩展库;polars相对较新,对应的文档、教程等资源较少。

  5. 适用场景:pandas更适用于中小型数据集的数据分析和处理;polars更适用于大型数据集或追求更高性能的数据分析和处理场景。

运行时间对比

数据读取

# train.parquet: 2.35G
%time train_pd=pd.read_parquet('/Users/Downloads/archive/train.parquet') #Pandas dataframe 
%time train_pl=pl.read_parquet('/Users/Downloads/archive/train.parquet') #Polars dataframe

CPU times: user 3.85 s, sys: 8.69 s, total: 12.5 s
Wall time: 10.4 s
CPU times: user 3.07 s, sys: 2.22 s, total: 5.29 s
Wall time: 3.39 s

聚合操作

%%time
# pandas query 
nums = ["num_7", "num_8", "num_9", "num_10", "num_11", "num_12", "num_13", "num_14", "num_15"]
cats = ["cat_1", "cat_2", "cat_3", "cat_4", "cat_5", "cat_6"]
train_pd[nums].agg(['min','max','mean','median','std']) %%time
# Polars query 
train_pl.with_columns([ pl.col(nums).min().suffix('_min'), pl.col(nums).max().suffix('_max'), pl.col(nums).mean().suffix('_mean'), pl.col(nums).median().suffix('_median'), pl.col(nums).std().suffix('_std'), 
])

CPU times: user 6.06 s, sys: 4.19 s, total: 10.3 s
Wall time: 15.8 s
CPU times: user 4.51 s, sys: 5.49 s, total: 10 s
Wall time: 8.09 s

查询后计算

# Pandas filter and select 
%time train_pd[train_pd['cat_1']==1][nums].mean()
# Polars filter and select 
%time train_pl.filter(pl.col("cat_1") == 1).select(pl.col(nums).mean()) 

CPU times: user 730 ms, sys: 1.65 s, total: 2.38 s
Wall time: 4.24 s
CPU times: user 659 ms, sys: 3.22 s, total: 3.88 s
Wall time: 2.12 s

分类再聚合

%time Function_3= train_pd.groupby(['user'])[nums].agg('mean')
%time Function_3 = train_pl.groupby('user').agg(pl.col(nums).mean())

CPU times: user 2.4 s, sys: 938 ms, total: 3.33 s
Wall time: 3.46 s
CPU times: user 6.92 s, sys: 2.68 s, total: 9.6 s
Wall time: 1.78 s

分组的列逐渐增加

# PANDAS: TESTING GROUPING SPEED ON 5 COLUMNS 
cols = []
for cat in ['user', 'cat_1', 'cat_2', 'cat_3', 'cat_4']:cols+=[cat] st=time.time() temp=train_pd.groupby(cols)['num_7'].agg('mean') en=time.time() print(f"{cat}:{round(en-st, 4)}s") # POLARS: TESTING GROUPING SPEED ON 5 COLUMNS 
cols = []
for cat in ['user', 'cat_1', 'cat_2', 'cat_3', 'cat_4']: cols+=[cat] st=time.time() temp=train_pl.groupby(cols).agg(pl.col('num_7').mean()) en=time.time() print(f"{cat}:{round(en-st, 4)}s") 

每增加一列进行groupby后计算,所需要的时间:

cols耗时
[“user”]0.7666s
[“user”,“cat_1”]1.8221s
[“user”,“cat_1”,“cat_2”]9.4581s
[“user”,“cat_1”,“cat_2”,“cat_3”]15.1409s
[“user”,“cat_1”,“cat_2”,“cat_3”,“cat_4”]16.5913s
cols耗时
[“user”]0.498s
[“user”,“cat_1”]1.1978s
[“user”,“cat_1”,“cat_2”]3.4107s
[“user”,“cat_1”,“cat_2”,“cat_3”]4.4749s
[“user”,“cat_1”,“cat_2”,“cat_3”,“cat_4”]4.6821s

排序

cols=['user','num_8'] # columns to be used for sorting 
# Sorting in Pandas 
%time a = train_pd.sort_values(by=cols,ascending=True)
#Sorting in Polars 
%time b = train_pl.sort(cols,descending=False) 

CPU times: user 31.9 s, sys: 7.28 s, total: 39.2 s
Wall time: 46.2 s
CPU times: user 32.2 s, sys: 7.04 s, total: 39.2 s
Wall time: 11.6 s

http://www.15wanjia.com/news/45339.html

相关文章:

  • 可以做基因通路分析的网站最有效的恶意点击
  • 网站开发是否属于技术合同百度问一问在线咨询客服
  • 茶叶网站策划外链网址
  • 微信网站开发完全教程如何建立免费公司网站
  • php网站建设案例重庆seo公司
  • 网站详情页用哪个软件做百度指数查询网
  • 上海品牌策划公司百度禁止seo推广
  • 旅游做视频网站百度公司电话热线电话
  • 上海建网站服务器晨阳seo服务
  • 阿里云个人备案可以做企业网站吗网络推广推广
  • 如何制作网站导航新东方小吃培训价格表
  • 奇迹私服做网站百度关键词优化软件
  • 织梦可以做导航网站十大搜索引擎网站
  • 企业移动网站建设商今日最新的新闻
  • 石家庄工信部网站站内关键词排名优化软件
  • 如何能快速搜到新做网站链接爱站网长尾关键词挖掘工具福利片
  • PHP 网站搜索怎么做百度手机端推广
  • wdcp网站迁移世界500强企业排名
  • asp.net网站安装教程广州最新重大新闻
  • 绵阳网站建设100jv小程序商城
  • 免费wap自助建站网站2022年seo最新优化策略
  • 公司网站怎么做教程软文营销的本质
  • 昆明网站建设 技术支持百度一下搜索引擎大全
  • 直播类网站开发互联网广告公司
  • 景观建筑人才网青岛seo青岛黑八网络最强
  • wordpress 下载服务器企业seo顾问公司
  • 如何攻击织梦做的网站方法免费加客源软件
  • wordpress 主菜单 背景重庆公司seo
  • 网站建设禁止谷歌收录的办法自己创建个人免费网站
  • 网页制作与网站管理搜狗推广登录入口