当前位置: 首页 > news >正文

asp.net网站安装教程广州最新重大新闻

asp.net网站安装教程,广州最新重大新闻,企业策划书范文案例,网站自己建机房文章目录 🏳️‍🌈 1. 导入模块🏳️‍🌈 2. Pandas数据处理2.1 读取数据2.2 数据信息2.3 数据去重2.4 订单日期处理提取年份2.5 产品名称处理 🏳️‍🌈 3. Pyecharts数据可视化3.1 每年销售额和利润分布3.2…

文章目录

  • 🏳️‍🌈 1. 导入模块
  • 🏳️‍🌈 2. Pandas数据处理
    • 2.1 读取数据
    • 2.2 数据信息
    • 2.3 数据去重
    • 2.4 订单日期处理提取年份
    • 2.5 产品名称处理
  • 🏳️‍🌈 3. Pyecharts数据可视化
    • 3.1 每年销售额和利润分布
    • 3.2 各地区销售额和利润分布
    • 3.3 各省订单量分布
    • 3.4 各省销售额分布
    • 3.5 各类别产品订单量
    • 3.6 客户类别占比
    • 3.7 Apriori算法关联分析
    • 3.8 帕累托分析
  • 🏳️‍🌈 4. 可视化项目源码+数据

大家好,我是 👉 【Python当打之年(点击跳转)】

本期我们利用Python分析「超市销售数据集」,看看:每年销售额和利润分布、各地区销售额和利润分布、各省订单量分布、各省销售额分布、各类别产品订单量、客户类别占比等等,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

  • Pandas— 数据处理
  • Pyecharts— 数据可视化

🏳️‍🌈 1. 导入模块

import pandas as pd
from pyecharts.charts import *
from pyecharts import options as opts
import warnings
warnings.filterwarnings('ignore')

🏳️‍🌈 2. Pandas数据处理

2.1 读取数据

df = pd.read_excel('超市销售数据.xlsx')

在这里插入图片描述

2.2 数据信息

df.info()

在这里插入图片描述

2.3 数据去重

df = df.drop_duplicates()

2.4 订单日期处理提取年份

df['年'] = df['订单日期'].dt.year

2.5 产品名称处理

在这里插入图片描述

🏳️‍🌈 3. Pyecharts数据可视化

3.1 每年销售额和利润分布

defget_chart1():chart = (Bar().add_xaxis(x_data).add_yaxis('销售额', y_data1,gap='5%',label_opts=opts.LabelOpts(formatter='{c}万')).add_yaxis('利润', y_data2,gap='5%',label_opts=opts.LabelOpts(formatter='{c}万')).set_global_opts(title_opts=opts.TitleOpts(title='1-每年销售额和利润分布',subtitle=subtitle,pos_top='2%',pos_left='center'),legend_opts=opts.LegendOpts(pos_top='15%')))

在这里插入图片描述

  • 销售额和利润均呈现逐年增长的趋势。

3.2 各地区销售额和利润分布

在这里插入图片描述

  • 华东大区的销售额最高,反映出当地消费能力较高,中南和东北地区紧随其后,利润方面来看,中南地区和华东地区的利润要远高于其他地区。

3.3 各省订单量分布

在这里插入图片描述

  • 沿海地区的订单量要明显高于内地,尤其是广东、山东、江苏、辽宁。

3.4 各省销售额分布

在这里插入图片描述

3.5 各类别产品订单量

在这里插入图片描述

  • 办公用品类商品需求量最大,占比超过了50%,技术类和家具类各占20%左右。

3.6 客户类别占比

在这里插入图片描述

  • 客户类别以个体消费者为主,其次是公司和小型企业。

3.7 Apriori算法关联分析

# 转换为算法可接受模型(布尔值)
te = TransactionEncoder()
d_data = te.fit(data_am).transform(data_am)
df_t = pd.DataFrame(d_data,columns=te.columns_)
# 设置支持度求频繁项集
frequent_itemsets = apriori(df_t,min_support=0.04,use_colnames= True)
rules = association_rules(frequent_itemsets,metric = 'confidence',min_threshold = 0.1)
# 设置最小提升度, 一般认为提升度大于1的关联规则才有商业价值
rules = rules.drop(rules[rules.lift <1].index)
# 设置标题索引并打印结果
rules.rename(columns = {'antecedents':'from','consequents':'to','support':'sup','confidence':'conf'},inplace = True)
rules = rules[['from','to','sup','conf','lift']].sort_values('sup',ascending=False).reset_index(drop=True)

结果:
在这里插入图片描述

在这里插入图片描述

3.8 帕累托分析

帕累托分析模型(Pareto Analysis),又称80/20法则、ABC分析法或主次因素分析法,是一种基于“关键少数与次要多数”原理的决策工具,用于识别和优先处理对结果影响最大的关键因素。

defget_chart8():bar = (Bar().add_xaxis(x_data).add_yaxis("销售额", y_data1,itemstyle_opts=opts.ItemStyleOpts(color=range_color[-1]),label_opts=opts.LabelOpts(is_show=False),).extend_axis(yaxis=opts.AxisOpts(max_=120,)).set_global_opts(title_opts=opts.TitleOpts(title='8-帕累托分析',subtitle=subtitle,pos_top='2%',pos_left='center',),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=60,font_size=10)),legend_opts=opts.LegendOpts(pos_top='12%')))line = (Line().add_xaxis(x_data).add_yaxis("累积利润占比",y_data2,z=10,yaxis_index=1,label_opts=opts.LabelOpts(is_show=False),))

在这里插入图片描述

🏳️‍🌈 4. 可视化项目源码+数据

点击跳转:【全部可视化项目源码+数据】


以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏也可以分享注明出处)让更多人知道。

http://www.15wanjia.com/news/45319.html

相关文章:

  • 绵阳网站建设100jv小程序商城
  • 免费wap自助建站网站2022年seo最新优化策略
  • 公司网站怎么做教程软文营销的本质
  • 昆明网站建设 技术支持百度一下搜索引擎大全
  • 直播类网站开发互联网广告公司
  • 景观建筑人才网青岛seo青岛黑八网络最强
  • wordpress 下载服务器企业seo顾问公司
  • 如何攻击织梦做的网站方法免费加客源软件
  • wordpress 主菜单 背景重庆公司seo
  • 网站建设禁止谷歌收录的办法自己创建个人免费网站
  • 网页制作与网站管理搜狗推广登录入口
  • 做网站要用什么编程语言发稿推广
  • 济南国画网站建设宁波最好的seo外包
  • 做网站建设需要做哪些工作视频号链接怎么获取
  • 如何学做网站东莞网络优化调查公司
  • wordpress留言板隐藏关键词优化排名软件s
  • 网站内容做淘宝店铺链接影响排名吗百度信息流投放技巧
  • 创意设计网站seo关键词排名优化案例
  • 电子商务网站开发技术有哪些站长工具 忘忧草
  • 网站怎么做必须交钱吗抖音搜索引擎推广
  • 太原网站建设的公司排名可以发外链的平台
  • 青浦手机网站制作网络营销中的四种方法
  • 南宁网站开发公司长沙做网站推广
  • 做网站百度推广广东seo教程
  • 电商自建站南昌seo搜索优化
  • 网站长域名品牌策划
  • 专业做网站全包2023年7月最新疫情
  • 怎么样做网站注册量百度风云榜明星
  • 深圳画册设计网站小说榜单首页百度搜索风云榜
  • 合肥网站搭建公司哪家好站长推荐入口自动跳转